
Automated Visualised Translation from
English to British Sign Language

Nicolaos Moscholios
Pembroke College

University of Oxford

Supervised by Dr. Joe Pitt-Francis

A thesis submitted for the degree of

Master of Computer Science

Trinity 2016

Abstract

A large number of people in the world today are born deaf and many
rely on sign language, with British Sign Language (BSL) being the most
widely used method of signed communication in the UK. BSL is struc-
tured in a completely different way to English and, like any language, it
has its own grammar. Unlike other languages, it is uncommon for indi-
viduals to take interest in it especially when unaffected by deafness. In
order to establish a communication bridge between English speakers and
deaf individuals there have been attempts at building a formal model of
translation. This thesis describes the development and implementation of
an interactive online tool to automatically translate from written English
to BSL, in order to increase the interest in sign languages even outside
the deaf community. Using a rule-based machine translation approach we
transform the English sentence to BSL embedded into a 3D animation
format, subsequently displayed in the browser in real-time. The system
is tested both through an empirical evaluation to assess the translation
accuracy, and user testing. Two expert BSL linguists also make an impor-
tant contribution to the evaluation. The tool is available on any browser
and can be used on personal computers, smart-phones and tablets.

Acknowledgements

First of all, I would like to thank my supervisor Dr Joe Pitt-Francis for his
valuable guidance throughout the development of the project, especially
in writing this report.

My sincere thanks also to Rachel Sutton-Spence, co-author of British Sign
Language: an Introduction for taking the time to review this project and
for her highly reliable feedback, as well as to Adam Schembri, Lecturer
in Sociolinguistics at the University of Birmingham for his valuable com-
ments and critique.

Last but not least, my deepest gratitude goes to my family and friends. To
my parents for supporting me and trying to help me out regardless of the
complexity of the problems I would present them with, both personal and
technical. To my friends and colleagues for the memorable times spent in
the Computer Laboratory trying to write our thesis, with the occasional
laughing sprees and (mostly) deserved coffee breaks. Finally, thank you to
my girlfriend for coping with my exasperating self during the last couple
of months, motivating me and telling me not to give up.

Notes

The work described in this thesis is available online at translate.nicmosc.
com. The system is browser based meaning no software installation or tech-
nical knowledge is required to access the interface. Examples discussed
throughout the report marked by an asterisk (∗) can be viewed on the
website. In order to complement the reading of this work it is highly rec-
ommended that the reader try those examples for a more comprehensive
understanding of the behaviour of signs in BSL. Please note that if the
website has been idle for a certain amount of time, it may take longer to
load initially.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 3
1.3 Structure . 4

2 Background 7
2.1 British Sign Language: Linguistics Overview 7

2.1.1 Structure of sentences . 9
2.1.2 Morphology and Morphemes 10
2.1.3 Verbs . 12
2.1.4 Questions and Negations . 14
2.1.5 Fingerspelling . 15
2.1.6 Non-manual features . 16

2.2 Machine Translation . 17
2.2.1 MT with Signed Languages 19

2.3 Personal Work . 22
2.4 Summary . 23

3 Design 25
3.1 Language Choices . 25
3.2 Translation . 26
3.3 User Interface . 27

3.3.1 User Interaction . 30
3.4 Summary . 31

4 Methods and Implementation 33
4.1 Rule-Based MT in Python . 33

4.1.1 Information Extraction . 35
4.1.2 Translation Rules . 39
4.1.3 System Components . 44

4.2 Animation in ThreeJS . 54
4.2.1 Blender . 54

i

4.2.2 JSON Format and JS Formatter 58
4.2.3 Animation Engine . 62

4.3 Cross-language Communication with Flask 69
4.4 Summary . 70

5 Evaluation 73
5.1 Translation . 73

5.1.1 Evaluation Metrics . 74
5.1.2 Short evaluation of previous projects 75
5.1.3 Data and Approach . 76

5.2 Accuracy Results . 78
5.3 Survey . 80

5.3.1 Usability . 81
5.3.2 Effectiveness of the Application 83

5.4 Feedback from BSL Linguists . 86
5.5 Summary . 89

6 Conclusion 91
6.1 Discussion . 91
6.2 Difficulties and Achievements . 92
6.3 Future Work . 93

6.3.1 Improvements . 93
6.3.2 Extensions . 94

References 96

Background Reading 102

A Translation rules 105

B Additional algorithms and Code 109
B.1 Data Extraction from the Stanford Parser 109
B.2 HTML scraper for the SignBank data retrieval 111
B.3 Main animation sequence loop . 112

C Screenshots and Project Structure 113

D Survey Questions 117

ii

List of Figures

1.1 Conceptual overview of the system 4

2.1 English sentence syntax tree . 9
2.2 BSL sign morphology schema . 11
2.3 Word alignment English-Spanish . 18
2.4 Vaquois triangle for Rule-Based MT 19
2.5 Interlingua representation using ZARDOZ 20
2.6 Word alignment English-ASL . 22

3.1 Machine Translation module design 26
3.2 UI Low fidelity prototype . 28
3.3 UI high fidelity prototype . 28
3.4 UI high fidelity prototype compared to Google Translate 29
3.5 Overlay with additional information and options 29
3.6 User interaction flowchart . 30
3.7 Sentence suggestions auto-fill . 31

4.1 System outline: Machine Translation highlighted 33
4.2 Python-side, object oriented overview of the pipeline 35
4.3 Tree transformation using rules: noun phrase 40
4.4 Tree transformation using rules: question 40
4.5 Combined example of tree transformation 41
4.6 SignBank website data and formatted result 43
4.7 Source Match Indexes derived from the match groups 46
4.8 System outline: Animation Engine highlighted 54
4.9 Potential 3D avatars - Ludwig and Elena 55
4.10 A visualisation of the weight falloff 56
4.11 Close up of the avatar hand and underlying bones 57
4.12 3D model bone structure . 57
4.13 Bezier vs. Linear interpolation . 58

iii

4.14 WebGL rendering pipeline . 64
4.15 A BSL sentence and visualised non-manual sequence 66
4.16 System outline: Flask Framework highlighted 69

5.1 WER operations . 79
5.2 WER operations on a classifier predicate sentence 80
5.3 Devices and browsers running the website 82
5.4 Visualised data for responses on clarity of the UI and loading times . 83
5.5 Movement ratings and avatar customisation 84
5.6 Issue with using SignBank before tree transformations 88

6.1 Static illustrations of the sign animal 94
6.2 Possible browser add-on for the current system 96

C.1 “Show non-manual features” enabled playback 113
C.2 First person view of the avatar when fingerspelling the letter “J” . . . 114
C.3 3rd person view at the same time as what is displayed in Figure C.2 . 114
C.4 File structure of the project . 115

iv

List of Tables

2.1 Examples of different BSL written forms 8
2.2 Some BSL proform handshapes . 10

4.1 Word objects information . 38
4.2 Run of the LinkSourceTarget algorithm 47
4.3 Reconstruction of the target. 47
4.4 Word objects after transformation . 50
4.5 Modifier parameters . 68

5.1 Test corpus statistical information . 77
5.2 Output for pair-wise sentence evaluation 78
5.3 System accuracy results for SL translation 78

v

vi

Chapter 1

Introduction

For most people around the world, communication is achieved orally by speaking.
Unfortunately some are born deaf or are affected by hearing loss with time. Thus,
it is necessary to use another medium of communication. Today there are about 1
million “functionally deaf” UK individuals [2], that is, that require the use of sign
language to converse. Additionally there are around 11 million people affected by
some degree of hearing loss and while many benefit from hearing aids, sign language
bypasses the need to speak, providing a medium for everyone to understand each
other.

1.1 Motivation

Communication between members of the Deaf Community in the UK is enabled
through British Sign Language, however the ability to converse is eminently reduced
when hearing and Deaf1 individuals need to communicate. Deaf people are taught
to read and write English from a young age, but it has been found that they have
difficulties understanding text with a reading level above that of primary school stu-
dents [17]. Thus it is not enough for hearing individuals to rely on written text to
interact with their community. Often, those people without hearing deficit learning
sign language do so because of a deaf child or relative, meaning only a handful of
hearing people have the ability to communicate with the Deaf. Those who wish to
learn the language can take lessons from BSL teachers and practice by engaging with
the Deaf community. However learning a new language, especially if very different

1“Deaf” with a capital D refers to people whom are affected by deafness but who are also active
within the Deaf Community and for whom BSL is their primary language. There are also deaf
people (with small d) that in contrast prefer not to rely on BSL and use other means such as
cochlear implants to communicate.

1

2 Motivation

from our mother tongue, can be time consuming and expensive if one wishes to follow
professional courses. Thus, people whom do not require to learn BSL rarely do so
because of pure interest, as opposed to learning other spoken languages. Currently
there exists no easily accessible tool to get an idea of how signed languages work.
Certainly, books are useful to learn the grammar, though it can be problematic to
some since images depicting gestures are not very easy to interpret. Other online re-
sources such as UCL’s BSL Sign Bank [37] and SignBSL.com [32] offer clips of signers
showing words and phrases in BSL that can be useful to learn specific signs. The main
issue is that they are highly static. Analogously to an English dictionary, these online
resources are only useful for looking up individual signs, and do not offer a proper
visual explanation of the internal workings of the language. An online translation
tool from English to BSL may be the answer to increase people’s interest in signed
languages. Not only could it be used as a complementary learning tool to enhance
the understanding of what is read in the books, but also as a way to look up any
sentence on the spot and get an idea of what BSL is like.

Automated translation has been an ongoing challenge in the field of computa-
tional linguistics, and we are finally seeing very positive results thanks to the recent
developments in machine learning. Since written languages are heavily dependent on
their syntactic components, they are relatively easy to formalise in such a way that a
machine can interpret a sentence and perform operations on it to transition from one
language to another. More recently, there have also been attempts at doing so with
signed languages such as ASL (American Sign Language) and BSL. Given that there
is no formally typed grammar for BSL, it is not easy to find a model that encapsu-
lates all key elements involved, such as facial expressions and eye gaze. In addition,
since the language is only signed, the only way to see if an interpretation is correct, is
through visual output. While some past implementations have been successful, due
to the then high computational power necessary to run these systems of automated
translation, most of them are now outdated or have been left at a prototype stage. In
2006, IBM created a fully working system [15] that allowed users to speak and see the
translation from English to BSL in real time; however it has been abandoned and is
not maintained any more. Moreover, none of the previous approaches was performed
with portability in mind. What made systems such as Google Translate so popular,
is that they were accessible anywhere, on any platform. Developing an analogous web
application for sign language translation would make it easy for anyone to access the
necessary information at the appropriate time.

1. Introduction 3

1.2 Objectives

This project will build upon previous work and attempt to solve the interlingual
translation from English to British Sign Language by implementing a web applica-
tion where signs are visualised through a virtual agent. Behaviour will closely follow
that of other established translation systems such as Google Translate where users can
type a sentence and get a result in real-time. Meanwhile, by overcoming the limita-
tions of pre-synthesised video it should promote the use of a virtual and responsive 3D
environment through a lightweight data approach. The rule-based translation meth-
ods (discussed in Section 2.2) and 3D animation techniques will allow users to not
only find out what a particular sentence corresponds to in BSL, but also practice their
skills thanks to the multiple media controls to adapt the playback to their likings and
achieve a better understanding. It is imperative to appreciate the fact that the system
cannot replace a real signer and even less a teacher. Because the translation may be
incorrect at times, as with virtually any existing translation system, it is expected to
be used as a complement to already established knowledge and for uninformed people
to get a general idea of BSL for the first time, and not as the sole learning tool. Being
an online web application, it will be the first SL translation system to employ modern
cross-browser languages such as JavaScript and Python to achieve portability. Figure
1.1 shows a conceptual overview of the system pipeline; this figure will be referenced
multiple times throughout the report. The main objectives of the project are:

• Design and build a machine translation system to transition from written En-
glish to British Sign Language through animation. The system should include
the analysis of English sentences using techniques learned in the Computational
Linguistics course to subsequently transform it into a BSL gloss form2 and an
appropriate data format to generate animations. The system should take into
account both manual and non-manual features (see Section 2.1.6). The transla-
tion should achieve satisfactory accuracy, enough to translate simple sentences
and possibly more complex constructs.

• To visualise the output of the translation, a web application will use web-
compatible 3D animation techniques to animate a virtual agent that will per-
form the gestures. The avatar will be carefully chosen and rigged with a skeleton
to ensure all possible movements of the arms and face can be executed. The

2Glosses are a representation of the meaning of signs in their English form, for example the
sentence I am eating is represented as me eat, where each of the two glosses describes the meaning
of an individual sign. Glosses are further discussed in Chapter 2.

4 Structure

accuracy of the animations is essential to ensure the appropriate usability and
understandability of the signs and non-manual features. Animations will be cre-
ated with the Blender animation software3, extensively used in the Computer
Animation course. Users should be able to control the playback of animations
through media controls like pause, play, speed change etc., and also change
point of view of the camera.

• Since one of the key features of this project is portability, the website will need to
be accessible on multiple platforms including personal computers, tablets and
smart-phones. It should work on popular modern browsers such as Chrome,
Safari and Firefox. Communication between the server and browser will be
achieved through a micro web framework discussed in chapters 3 and 4.

Machine Translat ion Animat ion Engine

Direct
Translat ion

Animat ion Loop

Load fi les

Animate

Special Cases

Generate Ouput Receive Data

JSON

Send Data

Front End

Flask

English sentence

Text Gloss

User input

HTML Gloss

Tree t ransforms

Server Browser

Figure 1.1: Conceptual overview of the system

1.3 Structure

The report will read as follows: in Chapter 2 we give a brief introduction to the
linguistics British Sign Language and its differences from written English, as well as

3https://www.blender.org

1. Introduction 5

existing methods of translation from written to written, and from written to signed
languages. Chapter 3 covers the design choices for the system, that is, the develop-
ment environment and the programming languages, the conceptual structure of the
pipeline and the end-user interaction. Following up in Chapter 4 we explain in detail
the implementation of both the translation methods and the animation techniques
utilised, as well as the communication between the two modules. Finally Chapter 5
discusses the evaluation of the system both in terms of translation accuracy, feedback
from the user survey and BSL linguists, while Chapter 6 concludes the report along
with project achievements, personal remarks and future work.

6

Chapter 2

Background

This chapter concerns Machine Translation from written English to British Sign Lan-
guage. As such it is separated in two main sections: a general overview of BSL
grammar and essential linguistics components, and Machine Translation theory and
its particular applications in BSL translation.

2.1 British Sign Language: Linguistics Overview

This section will give a short introduction to the linguistics of British Sign Language,
including common grammar rules, its morphology and how it differs from written En-
glish. Please note that only the most general information is described here in order
to follow the concepts discussed in Chapter 4 and other parts of the report, which
are based on this theory. However it is not necessary to read this section before the
one following as any approach that requires knowledge of BSL linguistics will refer-
ence this section for further understanding if necessary. The following examples and
explanations are based on the book by Woll and Sutton-Spence, The Linguistics of
British Sign Language: an Introduction.

British Sign Language, often shortened to BSL, has been an officially recognised
language since 2003 [33]. Like English, it has its own grammar [1] and its own lexicon.
While not as large as its written counterpart, there are enough signs to convey most
common ideas in sign language as many can be combined to create new meanings
(compounds, see Section 2.1.2). However BSL is not the only signed language; in
fact each country has their own variant with different dialects by region. It is then
easy to imagine that communication between Deaf individuals coming from different
countries can also be difficult. To counteract this problem, there have been attempts
at establishing an International Sign Language, albeit without success. Still, signed

7

8 British Sign Language: Linguistics Overview

languages coming from the same written relative do share features, such as BSL,
Australian and NZ Sign Languages all coming from British English. Similarly ASL
and ISL (Irish Sign Language) come from LSF (Langue des Signes Française) [8]. In
view of the fact that this project is being implemented in the UK, BSL was seen as
the most appropriate sign language.

Because BSL can only be transmitted through signing, there is no formal written
form. Many different ad hoc notation formats exist such as Stokoe, designed for
ASL by William Stokoe only for representing hand movements [34], thus carrying no
information about non-manual features and later adapted to BSL by Kyle and Woll
[16], HamNoSys (Hamburg Notation System) that can represent any signed language
[12], SignWriting which uses visual icons to represent parts of the body [35] and
more. Unfortunately all of the above require additional knowledge to be decoded
as they employ specialised notations with symbols that cannot be understood by
an untrained individual. Thus the most commonly used method to represent sign
language without needing to learn the notation is through gloss. Gloss uses the
most basic representation of the sign in its English written form. For example if
one wants to describe a situation where a girl is eating an apple, the gloss would be
girl eat apple. The advantage of this notation is that we can clearly understand
what a sentence means as we associate the sign to its English meaning. The main
disadvantage though is that there is no information about the signs whatsoever, we
only know that the particular sign for girl is signed first, followed by the sign for
apple and so on. Table 2.1 shows an example sign for every notation type.

Gloss notation also carries some information about non-manual features (see Sec-

tion 2.1.6) for example the sentence “Where do you live?” would be you live
br

where,
where br represents a brow raise for asking questions. This format is used in the rest
of the report and in the application.

English Sign SignWrite Stokoe HamNoSys Gloss

What?
br

what

Table 2.1: Examples of different BSL written forms; from http://www.signwriting.org

Let us now discuss the particular features of BSL and how it is structured as a
language.

2. Background 9

2.1.1 Structure of sentences

In English, sentences follow very similar patterns. Most often we find a noun phrase
followed by a verb phrase, each one containing information about the subject and the
object (Figure 2.1). BSL, just like English, has its own rules for ordering signs within
a sentence. Although sign order differs from ordering of English words, many signers
interacting with learners of BSL sometimes employ the spoken English ordering to
facilitate understanding. A sentence is divided in two basic parts: subject, the
theme or topic, most often a noun, a noun phrase or a pronoun, and predicate, the
remainder of the sentence normally describing the action of the subject. BSL borrows
some elements from English, such as the concept of pronouns, adjectives, verbs etc.
but also includes proforms and classifier predicates which do not exist in English.

S

VP

PP

NP

NN

mat

DT

the

IN

on

VBP

sat

NP

NN

cat

JJ

large

DT

The

Figure 2.1: English sentence syntax tree. Blue text represents word Part of Speech tags.

Proforms are “anything that refers to, and stands in the place of, something pre-
viously identified”, that is, one may sign a word such as car first, and then when
describing an action of the car such as “driving in a zig-zag motion” the dominant
hand assumes the proform shape associated with the car. Examples of hand shapes
include ‘B’ for vehicles and round/flat objects like plate (generally objects having 2
dimensions), ‘V’, ‘V̈’ and ‘G’ (one dimension) for man etc. Figure 2.2 shows exam-
ples for each1. When we use a specific handshape to describe the action or features
of a word belonging in a specific group2 is what is called a classifier predicate. In

1There are 22 handshapes in total and interestingly most of the shapes correspond to the ASL
signed alphabet.

2Groups are arranged by features that can represent physical properties of objects. A human
figure performing an action such as walking is symbolised by a reversed ‘V’ shape to mimic the legs
while a static figure would be expressed through a ‘G’ shape to delineate a whole body.

10 British Sign Language: Linguistics Overview

another example we may want to sign “The car goes under the bridge”, thus we would
sign car and bridge and then use the classifier for car veh-cl (vehicle classifier,
represented by the B hand with palm facing down) and the bridge classifier 3d-cl

(B̈ hand) to show the car moving under the bridge object.

B B̈ V V̈ G

Table 2.2: Some BSL proform handshapes; from http://www.lsfdico-injsmetz.fr

Pronouns are used similarly to written English but there are some differences.
Firstly, there is no distinction between masculine or feminine. Instead a G shape
hand is used, normally glossed as Index followed by a number to specify which part
of space we are referring to. For instance

John told Mary that he loved her

= -j-o-h-n- Index1 tell -m-a-r-y- Index2 Index1 love Index2 (∗)

Recall that any of the examples marked by an asterisk (∗) can be viewed on the
website. Those which are not marked as such are either known to behave erroneously
because the grammatical features involved are not handled by the system or because
the animations for some of the included signs is not available at the time of writing
this report. Of course all of the examples in this report can be demonstrated, however
the outcome will not be as expected. Subject Verb Object (SVO) is the preferred
word order in spoken English, while SOV is more common in BSL. Yet, as mentioned
previously many learners prefer to use SVO when signing. This works most of the
time however some verbs require an SOV construct such as me pizza eat as the
verb eat is modified by the type of object that is being eaten. In other words the
sign for eating a pizza will differ from the one for eating pasta.

2.1.2 Morphology and Morphemes

A morpheme in BSL is considered as the smallest unit of meaning in a word or sign.
We can combine them to form signs that have several meaningful parts but are still
considered a single sign. Figure 2.2 shows the BSL sign morphology tree. We dis-
tinguish between monomorphemic signs (cannot be further subdivided) like true,

2. Background 11

say, mouse and polymorphemic which are a combination of 2 or more morphemes.
For example promise is the combination of the sign for say and true whilst
check = see + maybe. We also categorise morphemes as Free that can stand
alone (i.e. monomorphemes like red, true, say) and Bound which have a mean-
ing but must be combined with at least one other morpheme, and Plural morphemes.

Signs

Monomorphemic
(free morphemes) Polymorphemic

2 (or more) free
morphemes “compounds”

Combination of bound
and free morphemes

Combination of 2
(or more) bound morphemes

Figure 2.2: BSL sign morphology schema

Free morphemes are often combined to form a compound, a sign with a different
but related meaning. Some are borrowed from English like balance-sheet while
others aren’t: blood = red + flow, tiger = zebra + animal. When combin-
ing free morphemes, the compound must appear as similar as possible to a single sign,
thus the originals are modified by rapid transitioning (both signs are accelerated), the
initial hold of the first sign and any repeated movement in the second sign are lost.
For example since mother = -m-m- and father = -f-f- then parents = -m-f-

and not -m-m-f-f-. Please note that the notation of single letters wrapped by dashes
“-” refers to fingerspelling. Fingerspelling is the action of signing letter by letter a
word borrowed from English; fingerspelling is discussed in greater detail in Section
2.1.5.

Bound morphemes must be attached to another free morpheme. The sign for
drive-casually combines the free morpheme drive (verb) and bound casually,
since we need to specify what action is being performed in a casual manner. Simi-
larly the agreement verb ask (see Section 2.1.3.2) requires the subject and object
such as you and me (both free morphemes) to form the complete verb you-ask-me.

Plural morphemes include both free and bound morphemes and can carry infor-
mation about nouns and verbs. In English this trait corresponds to the terminal -s.
In “cats” we find cat + s where [s] is the form of a bound morpheme: it cannot stand

12 British Sign Language: Linguistics Overview

alone. However in BSL we cannot just add a terminal to the sign. Instead plural
morphemes can be attached to a sign, modify the sign itself or appear separately. For
example the plural “children” can be signed as child repeated multiple times, or by
signing two child if we know there are 2 of them, or otherwise using pronouns like
child them to mean that there are more than one.

Adjectives also carry some morphological information as they convey a particular
feature of nouns or pronouns. Adjectives can be attributive when they occur in
the noun phrase and appear before, after or within a noun e.g. shirt white, or
predicative when they act like a verb e.g. man Index3 tall where the man is
“executing” the action of being tall. However they are not used very often, since signs
can be modified directly instead; the sign for box involves making a square shape
with both hands, however small-box and large-box will modify the movement
for the base sign by leaving less or more space between the hands respectively. Signs
that cannot be directly modified make use of the normal adjective signs (there is
indeed a sign for both small and large) and can be preceded by a premodifier like
very, quite etc. Adjective signs in comparative (-er) and superlative (-est) form
are modified by making the initial hold very long and tense3, followed by a rapid
release, where the degree of tension depends on the modifier.

2.1.3 Verbs

2.1.3.1 Tense, Aspect and Mood

In English when we want to refer to an action that will happen in another point in
time we conjugate the verb (“He will go home”) or use words that convey the same
idea (“He’s going home tomorrow”). In BSL, keywords such as will and tomorrow

can be used to show an action happening at a different time. Furthermore, time is
always set at the beginning of a sentence and is also emphasized through eye gaze
(see Section 2.1.6.3). For instance

I went to London yesterday = yesterday me go -l-o-n-d-o-n- (∗)

Aspect is the internal timing of things and describes if something is happening relative
to another event, how long it went on for, if it is not finished yet and so on. For
example if we are describing the action of someone looking for a long time, the sign

3Not to be confused with the tense of a verb

2. Background 13

look-for-a-long-time is simply the base sign look with the hands kept in
position for longer and a facial expression with eyes open wider.

What in English are used as modal auxiliaries like may, can, shall, must are
performed by signing the corresponding signs either before or after the verb e.g.
can have, modifying the verb itself by making it stronger and bigger depending on
the mood e.g. must-ask is stronger than can-ask, or by using facial expressions.

2.1.3.2 Verb types

In BSL we define two types of signing space: topographic and syntactic. The for-
mer describes a real world location according to the actual features. For example if
standing outside one may directly point at a tree they want to describe. On the other
hand, the latter is a space “created within the language” and may not reflect the real
world since it is used figuratively. In the sentence

I gave my aunt a book = aunt Index3 Index1 book1 give-book3

The real aunt is not where the signer is pointing (Index3). Furthermore, we distinguish
between 3 types of verbs:

• Plain verbs: these signs show little modification and do not move through space.
Any information about what and how many entities the verb describes is given
through pronouns. E.g. “I like him” is signed me like him i.e. all signs are
separated.

• Agreement verbs: can be modified to show additional information and are signed
in syntactic space. “I give you ...” is me-give-you, where the hand moves from
the me position to you with the specific handshape (verb stem) for give;
pronouns are not signed individually. This movement has 3 steps: subject
agreement marker, verb stem and object agreement marker. This means that
in you-give-me the movement is essentially reversed.

• Spatial verbs: use topographic space instead and are used to describe a tra-
jectory, speed of movement and location of an action. Examples include run-

downstairs, drive-to etc. Most often these use classifier predicates to
describe surrounding entities (see Section 2.1.1).

14 British Sign Language: Linguistics Overview

2.1.4 Questions and Negations

When asking a question, the whole sentence is accompanied by an eyebrow raise, a
head tilt and opened eyes. The question “Do you like tea?” is written in gloss as

q
you like tea. Some questions only include a brow raise on parts of the sentence,

such as in “You have three children right?” = three child have
q

right since we
are asking for confirmation.

Wh- question, which include what, why, where, when, who, which, how usually
follow the same rule as the above where only the wh- word is accompanied by a
question facial expression. For example:

Who are your parents? = your -m-f-
q

who (∗)

Where did he go? = Index1 go
q

where (∗)

However questions can also be used in sentences which are not questions by nature.
In fact the following

I love John because he’s nice = me love -j-o-h-n-
q

why Index1 nice (∗)

I won’t go to the beach if it’ll rain tomorrow

=
q

tomorrow rain me
neg

not go beach (∗)

essentially turning the sentence into a rhetorical question followed by the answer. The
same happens when we try to describe the state of an object or person:

The keys are in the kitchen = keys
q

where kitchen

I live in Essex = me live
q

where -e-s-s-e-x- (∗)

Sentences that contain negations are signed considering three main elements:
Facial expression: the lips are pushed out and the eyes are narrowed
Head movements: the head turns to the side and is held there (accompanies a
specific sign) or alternates between the left and right sides. The latter can negate
both whole sentences or single signs e.g.

I’m not eating pizza =
neg

me pizza eat

me pizza
neg

eat

me pizza eat neg

2. Background 15

Negation signs: these are specific hand gestures to show that a negation is happen-
ing, the most common ones are a flat hand, palm down twisting up following a verb
or adjective (often used as a suffix with see +neg, have +neg for denial of possession
or experience) and the not sign. Thus the previous example can also be written as

I’m not eating pizza =me pizza
neg

not eat

Additionally, some signs when negated are completely different from the original and
are not just preceded by not and the neg expression. For example the verb “know”
is performed by the dominant hand’s fist with the thumb up tapping on the forehead,
while its negation not-know sees the two flat hands moving away from the forehead.
This rule also applies to other expressions, such as

He didn’t show up =Index1
neg

not show-up

2.1.5 Fingerspelling

Fingerspelling is the action of using the signed alphabet to spell out a word, normally
borrowed from English. The most general rule for figerspelling is that if the word is
less than 3-4 letters long it is spelled in full, otherwise it can be abbreviated. The
fingerspelling notation in gloss form is -b-b-c- or -b-b-c- (example for the commonly
known broadcasting company). There exist a few abbreviation rules and the most
common ones are:

• Using the first syllable e.g. January = -j-a-n-

• When the second letter is ‘h’ we retain the first 2 e.g. chapter = -c-h-

• We can also use the first and last letter (mainly used for places) e.g. Glasgow
= -g-w-

Many names of places also have their own sign and as a result are not fingerspelled.
However if an unknown word is introduced in a context for the first time, such as
personal name or a place name, then it is first spelled in full, and the following
time the abbreviation is used. The name Hannah may be signed as -h-a-n-n-a-h-

first and then just as -h-. On the other hand it is not uncommon for signers to use
body/character features to refer to someone. For example if I would like to talk about
a person who wears glasses, I would first need to sign their full name, followed by the
sign for glasses. After setting that context the signing partner would know that every
time glasses is signed, that particular person is being referred to.

16 British Sign Language: Linguistics Overview

2.1.6 Non-manual features

Non-manual features represent any action carried out by the signer which is not
performed by the hands and are used to represent spoken language mouth patterns
in combination with signs, enacting actions and setting the context like verb tenses
and questions. These are very important in BSL and are often mistakenly neglected
by the uninformed individual.

2.1.6.1 Spoken and Oral Components

Spoken components are used to better identify the sign being used. Nouns that are
fingerspelled are also mouthed when the last letter is signed; this also applies to
abbreviated signs i.e. only one letter is signed but the whole word is mouthed. They
are also extremely useful with homonyms4 since only through mouthing it is possible
to distinguish two meanings of a sign that has the same gestures e.g. finland and
metal. The mouthing shape is borrowed from the English spoken version of the
words.

Oral components enact real-life actions such as laughing or biting, where the sign
is entirely mouthed. The hands are not involved since the act of laughing can be
performed by opening the mouth and closing the eyes like one would in a compara-
ble authentic humorous situation. Additionally, mouthing can be used to represent
negations as described in Section 2.1.4. On the other hand it is indeed possible to
describe the same actions through completely manual signs, albeit these are rarely
used.

2.1.6.2 Facial Expressions and Head Movements

Facial expressions are used to mark a question or a negation (as seen above) and to
show emotions e.g.

I was happy when dad arrived =
happy

me happy when -d-d- arrive

They are also used in combination with a head nod to mark the topic. The topic
can be temporal when describing a situation in time such as “When I. . .”, spatial and
nominal when describing a location or an entity. Most often,

The dog chased the cat =
hn

dog cat chase

where hn stands for head nod.
4Homonyms in BSL do not refer to simple synonyms. Instead these are signs that, even though

share the exact same gestures, carry completely different meanings expressed by non-manual features.

2. Background 17

2.1.6.3 Eye Gaze

Eye gaze plays an important role during signing because of multiple reasons:

• Lexical distinction: some signs such as god and boss are signed in the same
way (homonyms) and are distinguished by the eye gaze; when signing god the
eyes look upwards, similarly to how spoken components are used (see Section
2.1.6.1).

• In conjunction with location and movement: the sign for he/she (glossed as
Index) may be in the same location as the sign for you but the eyes pointing
somewhere else than the listener imply we are discussing another person. In
addition the eyes follow the hand during movements e.g. when describing a
rolling ball.

• To mark time: in conjunction with a movement of the head, looking on the
side can indicate the past, ahead or down indicates present, while looking up
indicates the future.

2.2 Machine Translation

Now that the necessary background in BSL linguistics has been laid out, let us discuss
machine translation and how it has been previously applied to signed languages. For
this section, the book Speech and Language Processing by Jurafsky and Martin was
used as background reading.

Translation between written languages has been an ongoing research topic in the
field of computational linguistics. The basic idea is that we wish to find relations
between the syntactic components of the source and target language, and then model
them in a way that a machine can understand it. There exist currently two main au-
tomated translation approaches: statistical and classical. Statistical Machine Trans-
lation (SMT) is more recent than the latter, and has become very popular in recent
years thanks to the advancements in machine learning and major increase in pro-
cessing power of modern computers. It is based on the concept of analysing huge
bilingual corpora, which are essentially lists of sentences in the source language, with
each having a set of possible reference translations. Classifiers are trained on these
corpora and assign a probability of translation for each word in the sentence: this
technique is called word alignment. In Figure 2.3 each word from the source sentence

18 Machine Translation

is assigned 0 or more words from the target. For instance the Spanish alignment of
“did not” is “no” and the verb “slap” in this context set in the past corresponds to
“dio una bofetada”. If the context of the sentence was set in the future the verb “slap”
would translate to “dará una bofetada”.

Maria no dio una bofetada a la bruja verde

Mary

did

not

slap

the

green

witch

Figure 2.3: Word alignment English-Spanish

However SMT is only possible when large amounts of parallel data are available.
In the case they are not, other methods are required. Classical, or Rule-Based,
Machine Translation (RBMT) requires deep understanding of both the source and
target language in order to work. It involves the creation of “rules” that closely
follow the syntactic and semantic constructs of both languages. The Vaquois triangle
illustrates the multiple techniques, often combined, in rule-based translation (Figure
2.4).

Direct translation stands at the lowest level and is simply an equivalence re-
lation between the words in the source and target languages. This step is usually
performed via a dictionary lookup: word to word translation corpora are much more
common than whole sentences. Transfer is a process that involves the transforma-
tion of the source language structure into another that resembles the target. Syntax
trees can be generated by analysing both languages and then transforming the source
to the specification of the target. From there direct translation can be applied to
achieve a complete translation. Finally interlingua, while similar to transfer, is the
transformation of the source into a universal representation that can be applied to
any language. This is most useful when translation needs to occur both from and to
the source and target.

2. Background 19

Transfer

I nterl ingua

Source Direct t ranslat ion

Analysis

Target

Generat ion

Target syntaxSource syntax

Figure 2.4: Vaquois triangle for Rule-Based MT; illustration inspired by https://en.
wikipedia.org/wiki/Machine_translation

While statistical MT approaches usually achieve much higher accuracy than non-
statistical methods because of the sheer amount of data used in the process, there have
been multiple successful attempts at creating rule-based systems to cover languages
with little or no corpora, even though they do prove to be much more time consum-
ing to build and maintain [19]. The most popular open-source system currently using
shallow-transfer rules is Apertium5. It uses a language-independent specification so
that resource-poor language pairs such as Serbo-Croatian/Macedonian can be added
gradually [26]. A more recent approach has been that of hybrid MT, where both sta-
tistical and rule-based methods are combined to achieve more flexibility and accuracy,
sometimes using rules to correct the output of the statistical module [31], generate
phrases to enrich SMT systems [29] or by using medium sized corpora to induce rules
to later be used with unseen sentences[5] [30] [11].

2.2.1 MT with Signed Languages

Sign languages (including BSL and ASL) are visual-spatial by nature, hence there
exist no text-based corpora. For this reason, many of the existing approaches have
been rule-based rather than statistical, with some exceptions. Here we discuss the
most successful approaches at translating into sign languages, their advantages and
drawbacks.

5https://www.apertium.org

20 Machine Translation

ZARDOZ is a cross-modal translation system based on artificial intelligence using a
blackboard control structure, where a common knowledge base is updated by workers
as more solutions are found [38]. The solution ultimately being an interlingual rep-
resentation of the source translation (Figure 2.5). Its main advantage is the ability
to translate from English into any sign language, such as Japanese, American and
Irish Sign Languages [39]. To animate the output they use a virtual signing doll and
calculate signing space to place the hands. However it is missing a sign lexicon i.e. a
dictionary of signs, and there is no evaluation of the system in terms of accuracy or
quality of the signing.

> I have a terrible headache

0 .. 5 : *SPEAKER* HAVE-0 A TERRIBLE HEADACHE-0

(S (NP *SPEAKER*)
(VP (V Have-0)

(NP (DET A)
(NP (ADJ Terrible)

(NP Headache-0)))))

Possessor:

Possession:

Tense:

Surface-Form:

Have-0
SPEAKER

HEADACHE-0

PRESENT

ACTIVE-VOICE

Sufferer:

Ailment:

Tense:

Surface-Form:

Suffer-From-Ailment-0
SPEAKER

PRESENT

ACTIVE-VOICE

NULL-SIGN

ASL-ME

ASL-INTENSE

Forehead::
ASL-HURT

HEADACHE-0

ASL OutputInterLingua

Syntactic Analysis

Schematization

*

Figure 2.5: Interlingua representation using ZARDOZ; from [38]

ViSiCAST is a transfer based system from English to BSL that uses the Ham-
NoSys phonetic transcription notation [20] [21]; refer back to Table 2.1 for a visual
comparison of the different notation schemes. It involves 1) syntactic parsing using
the Carnegie Mellon University link grammar parser, 2) semantic transfer i.e. the
conversion to the SL structure from written English (here the data resembles an in-
terlingua), and 3) the generation of SiGML6. The output is then used to generate
the video animation. Each sign stored as SiGML is animated using gesture tracking
software for both the face and body movement, making the resulting signing very

6Signing Gesture Markup Language, an XML compliant representation of HamNoSys

2. Background 21

realistic. While there are no available accuracy results, the system has been tested in
face-to-face scenarios in UK post offices with successful outcomes.

TEAM, another rule-based method dating from 2000, is one of the first systems
to use an augmented gloss representation of signs to generate its output. Through
synchronous tree-adjoining grammars they convert the syntax trees of the source to
the target language representation. In addition, embedded parameters help model the
non-manual features such as facial expressions and extra-sign modifiers like “Effort”
and “Shape”, which include speed, weight and spatial information of signs [41].

One of the few purely statistical implementations using solely word alignment
techniques is described in [24]. Figure 2.6 shows how word alignment works with a
translation from English to SL gloss. The main downside to this approach is that
through word alignment there is no transfer of non-manual information, especially
since their representation uses basic gloss. In addition the corpus which this system
was tested on is restricted and thus does not allow for great flexibility. MaTrEx
[23] is another data-driven system, used in the development of software to be used in
airports. One of the only well documented and properly evaluated implementations of
statistical MT with sign languages, it covers multiple language pairs including English
to ISL (Irish Sign Language) as well as combinations spoken languages (English,
German) to signed languages (German and Irish SL). Its evaluation and performance
is reviewed in more detail in Section 5.2 alongside other statistical implementations
with insightful results. A particular feature of BSL, and other similarly structure
sign languages, is the use classifier predicates. Briefly explained in Section 2.1.1,
these help signers construct very complex scenarios and descriptions in sentences and
are extremely hard to model in a translation system. The most noteworthy work on
the translation of classifiers was carried out by Matt Huenerfauth where interlingual,
transfer and direct techniques are combined to create a “multi-path” approach [14][13].
The intermediate representation of a sentence is actually a 3D interpretation of the
elements involved in the sentence. For instance the sentence “The car drove down
the bumpy road past the cat”, involves the initial location of the car and the cat
which have to be represented by an appropriate handshape, the articulation of the
car movement, as well as the notion that a cat sits on a road path and that the
car should move along the same path. While our system is not capable of handling
classifier predicates, as will be explained in Chapter 4, it is interesting to mention this
work since a simplified version of this approach could be used to implement agreement
verbs. This potential approach is further discussed in the future work Chapter 6.3.

22 Personal Work

YOU CAKE EAT ?

Did

you

eat

the

cake

?

Figure 2.6: Word alignment English-ASL

Ultimately, while all of the above manage to achieve some sort of translation from
English to signed languages, none have been developed with portability in mind. The
software needs to be either installed on a computer or a server making it only available
to a handful of stakeholders. In contrast to the above, an interesting project tackles
this by creating a mobile application to translate on the go [4]. Signs are stored in
a database and when a request to translate is made, the analysis of the sentence,
translation and construction of the video output is done remotely. In addition, a
special animation software was made available for users to create their own signs
and add them to the dictionary. However this means translation is only available
through the app installed on a phone, and the small screen of hand held devices
makes it difficult to properly see the animations. Furthermore, only video is returned
to the user, meaning there is no freedom of view (such as changing to a first person
perspective, like was done in [10]). To our knowledge, there is no cross-platform,
online translation tool currently available to translate from English to BSL. Our goal
is to create a real-time translation tool available to anyone, anywhere.

2.3 Personal Work

It is necessary to mention that I have already worked on Sign Language in conjunction
with Animation. For my undergraduate project I created a system to teach BSL
virtually, although it only displayed a set of precomputed animations (animations
were simply rendered in real time) and did not include any linguistic analysis nor did
it interpolate between signs. The architecture used to build the animation components
was not efficient and did not fully exploit the features offered by 3D rendering libraries

2. Background 23

such as OpenGL (which I will partially use again, through JavaScript). In my previous
project, since I wanted to learn more about skeletal animation, I built everything from
scratch in Java, something I would not do now considering the online environment
and time restrictions imposed by the other aspects of the project. While I have not
reused any previous material, I have used the knowledge learnt from it in order to
avoid repeating mistakes.

2.4 Summary

In this chapter we presented the basic linguistics concepts of BSL to give an idea of
the complex elements to be considered when building a translation system for signed
languages. We have also discussed existing approaches to this problem using a range
of techniques, their drawbacks and benefits. The most accurate method currently
available is Statistical Machine Translation, however the lack of an appropriate corpus
requires alternative rationale. The knowledge laid out in this chapter will be used to
build an online, cross-platform and portable tool to translate from English to BSL
using a corpus-free rule-based method. The design and implementation of this tool
and necessary rules to achieve the translation is attentively explained in the following
chapters.

24

Chapter 3

Design

This chapter covers the overall design of the system, from the approach used for the
machine translation problem to the interface and interaction with the end user, in-
cluding the development environment and technology choices for the implementation.

3.1 Language Choices

Nowadays, most web application heavily rely on the use of JavaScript libraries such
as jQuery which allow for easy interaction with the user interface. We are seeing more
and more websites turning into full multi-purpose applications, such as the Google
Docs suite which enables complex document editing directly from the cloud. One day
we may not even need to install a program or application on our devices, as it will
be simply available on a browser. Many of these modern web apps often use 2D and
3D animations for uses ranging from simple aesthetic effects to complex in-browser
gaming. Since its release, WebGL has been the go-to library for high complexity,
cross-browser animation. It is a subset of the high performance graphics library
OpenGL, used in a very large number of video games as well as applications such as
the Adobe suite, multiple computer-aided design software (CAD) and Google Earth.
While WebGL can be scripted directly to work in browser (WebGL is written using
the OpenGL Shading Language), the best alternative to avoid having to create an
animation and rendering engine from scratch is ThreeJS1, a JavaScript API that
displays 3D animations. Its skeletal animation module makes it incredibly easy to
load in a model with a skeleton of bones and joints, and keyframe animations from
popular 3D file formats and render everything into a scene.

1http://threejs.org

25

26 Translation

To implement the machine translation module Python was the preferred language
choice due to its extensive Natural Language Processing (NLP) library, nltk2 and for
its ability to combine OOP and functional programming styles. Furthermore, in the
proposed implementation Python works on the server side and performs all machine
translation operations to be returned to the browser, thus cutting down the process-
ing workload on the browser. Since data will be travelling across different language
modules, it was decided to use the Flask framework3 to enable cross-language com-
munication between the browser and the server. The application is hosted on a free
server account of the Heroku cloud platform4.

3.2 Translation

The translation module in Python was designed following the methods described in
the previous work on MT for sign language in Section 2.2.1. Since no corpus was
available, it was decided to use a rule-based translation approach using transfer and
direct translation techniques. Figure 3.1 illustrates the translation pipeline working
on the server-side.

Direct
Translat ion

Special
Cases OuputTree

TransformsText Input

Stanford Parser WordNet SignBank

Word Lemmat izer

Rules

Figure 3.1: Machine Translation module design; the external inputs are obtained either from
third party components or preprocessed data from web resources.

The design of the pipeline was heavily inspired by the approach used in [20], while
the tree transformation techniques described in [41] is most similar to the one used
here. All of the employed methods and algorithms are discussed in detail in Section
4.1. As mentioned in the previous section, Python comes with a large number of
available libraries, one of them being ntlk. It is used for many tasks of natural lan-
guage analysis including part of speech (POS) tagging and named entity recognition5.
In our implementation we use it mainly to:

2http://www.nltk.org
3http://flask.pocoo.org
4https://www.heroku.com
5Abbreviated to NER, it is the process of identifying pre-defined named entities in a text such

as names of people, places, organisations (e.g. brands), percentages etc.

3. Design 27

• Access the WordNet interface for setting the category of each word. For example
the noun “man” belongs to the category noun.person and the verb “have” to
verb.possession.

• Employ the provided syntax Tree data structure with many useful methods.

• Perform lemmatisation over words6 to retrieve the words roots.

nltk also provides a POS tagger, but it is slow and not as accurate when compared to
the state-of-the-art Stanford Parser, with approximately 10% difference in accuracy
in favour of the latter [36].

Because the system needs to be expandable with time, most of its components,
starting with the tree transformation module, are very versatile. Rules are not hard-
coded but instead stored in a user-accessible text file that can be progressively mod-
ified with time. The way these rules are created and how they affect the translation
is explained in Section 4.1.2.

3.3 User Interface

As discussed previously in the Objectives (Section 1.2), the UI should enable users to
easily access the controls to insert and translate a sentence of their choosing, whilst
allowing continuous visibility of the virtual avatar. The model representing the virtual
signer should be made an integrated member of the interface to prevent distractions
and potentially degrade usability. The user interface to access the underlying trans-
lation system consists of only a single page, with a large view of the virtual agent and
floating controls. Figure 3.2 shows a sketch of the interface layout, including desktop
and mobile versions since the system is supposed to work on both classes of devices.
Figure 3.3 is a screenshot of the final version of the website and when compared to
the low fidelity prototype, it is apparent that all elements have been implemented as
anticipated.

6Lemmatisation is used to “reduce inflectional forms and sometimes derivationally related forms
of a word to a common base form” [7]

28 User Interface

I nput

Avatar

Opt ions

Controls Translate
I nput

Output
Output

Desktop View Mobile View

Figure 3.2: UI Low fidelity prototype

Figure 3.3: UI high fidelity prototype

The UI is somewhat similar to the one found on Google Translate, with the input
on the left and output on the right, and the familiar “Translate” button coloured in
blue (Figure 3.4). Though instead of language choice options we find controls for the
camera and playback.

3. Design 29

Figure 3.4: UI high fidelity prototype compared to Google Translate

At the bottom of the page are the info and options buttons that create an overlay
on top of the current view (Figure 3.5):

• Clicking the info button supplies general information to the user including a
disclaimer about translation accuracy as well as currently available signs. In
addition, a detailed explanation of the sign symbols and non-manual features
displayed during playback is also provided.

• Options include playback speed, automatic camera angle and the ability to hide
or show non-manual features.

Figure 3.5: Overlay with additional information and options

Playback speed can be decreased by users who would like to follow the gestures more
closely, or increased for those who prefer a faster signing style. Non-manual features
such as “q” and “neg” are shown in the gloss output on the right hand-side, however by

30 User Interface

enabling the “Show non-manual features” in the options, all features are shown: this
includes facial expression for setting the time, head nods for indicating the subject
etc. which are normally not included in the gloss. See Figure C.1 in the appendix for
screenshots of the app when displaying non-manual features.

3.3.1 User Interaction

Figure 3.6 illustrates the main actions available to the user and how they affect the
application; the “Process Data” state is a separate set of events that happen on the
server side. From the controls above the input it is possible to pause the animation
currently playing (even when in idle state), play/unpause, and change camera angle.
The button press switches between the default free-movement view to first person;
the change can be set to automatic in the options menu for when fingerspelling7. See
Figures C.2 and C.3 in the appendix for a comparison between first person and 3rd
person free movement view. The translate button is not available to click until a
sentence has been entered; this is to prevent potential errors if trying to translate an
empty string. After pressing “Translate” a spinning wheel is shown to alert the user
that processing is currently happening. Subsequently the output from the machine
translation process is returned and displayed as animations. While these are playing
the user still has access to the play/pause and view change controls as well as the
ability to interrupt the animation and return to idle.

Star t Await input

Process data

Load page

Opt ions
Screen Info Screen

Open page

Animat ion
Loop

Load animat ions Play/pause/POV Opt ions

Update speed

Info

Load animat ions

Translate

Exit website

Website running

Figure 3.6: User interaction flowchart. Dashed lines show system events and solid lines user
actions.

The output is also shown as gloss notation on the right hand side, similarly to
what someone would find on the aforementioned Google Translate. To increase the
understanding of what is being signed, each gloss word lights up in blue when it

7Most often than not the alphabet is illustrated as seen from the signer and not from a frontal
view.

3. Design 31

is currently being signed by the avatar, similarly to karaoke where the lyrics follow
the song with a moving symbol or by changing color. As described in the general
information page (Figure 3.5), blue highlighting is the default colour for the current
sign, green means the sign is a compound (Section 2.1.2) and red means the sign
is not yet available in the dictionary of signs and thus cannot be displayed by the
avatar. In addition to the above features, users can also have sentence suggestions to
get started with translating by clicking on the “A” to the left of the input box (Figure
3.7).

Figure 3.7: Sentence suggestions auto-fill

3.4 Summary

This chapter described the user interface design for the web application which sup-
ports all of the functionalities listed in Section 1.2. The interface was kept simple
and similar to existing online translation websites, so as to make user interaction in-
tuitive and fun. Reasons for specific language choices and development environments
were made clear, and an overview of the translation pipeline was also given. The
specifics of the system implementation will be discussed next and all decisions in the
following chapter have been made with the design specifications and previously stated
requirements in mind.

32

Chapter 4

Methods and Implementation

This chapter will detail the development and implementation methods of the afore-
mentioned system, taking into account BSL translation requirements and previous
work on this topic. There are two main sections: the translation module in Python
where techniques from Section 2.2.1 are employed, and the animation in TreeJS which
covers skeletal animation in Blender, the JSON file format, 3D scene components, and
algorithms to play said files. Finally a short explanation of the communication be-
tween the two essential modules is found at the end of this chapter.

4.1 Rule-Based MT in Python

Front End

MT Animat ion Engine

Direct
Translat ion

Animat ion Loop

Load fi les

Animate

Special Cases

Generate Ouput Receive Data

JSON

Send Data

Flask

English sentence

Text Gloss

User input

HTML Gloss

Tree t ransforms

Figure 4.1: System outline: Machine Translation highlighted

Figure 4.1 highlights the components that will be discussed in the following pages.

33

34 Rule-Based MT in Python

Before starting a detailed discussion of the implementation of the translation module,
let us quickly summarise the translation process from start to end. Keep in mind
that the translation begins with a request received on the server side as a result
of the user pressing the “Translate” button on the browser, and ends by the server
sending the output back to the browser, which is then displayed on screen. At the
very beginning, a sentence in English text is sent to the server and information is
extracted using multiple resources including the Stanford Parser and WordNet. This
analysis step is necessary in all rule-based methods as it is through this information
that the system can perform the transformations. The sentence is then set to an
intermediate state through transfer. Finally, the data is made into a BSL sentence by
embedding non-manual features (discussed in the Background Section 2.1.6). From
this representation the output is obtained and sent to the browser.

The Stanford Parser plays a crucial role in the pipeline and it is in fact the initial
analysis of the sentence that captures the most important information. While we
will not be discussing the internal workings of the parser, it was necessary to develop
special code to obtain the resulting data. In our implementation, when the web-app
is launched a dummy request is sent to the online version of the parser1. If a positive
response is received i.e. if the website is online, all following sentences are sent to
it directly. Otherwise a local instance of the parser is created and all analysis is
performed on the server. This fallback exists because the Stanford website may be
offline at times due to multiple reasons, and complete reliance on an external tool such
as this one could prove problematic should it be made entirely unavailable. As such,
a Parser object is created in Python, which depending on the version created (online
or local) executes different code to retrieve the data. Details of the data retrieval
from both of the parser versions is found in Appendix B.1.

1Available at this address http://nlp.stanford.edu:8080/parser/index.jsp

4. Methods and Implementation 35

4.1.1 Information Extraction

Python
JavaScr ipt

APP

Analyser

English Sentence Send sentence

Receive result

Browser

I ntermediate
Sentence

BSL Sentence

Tree t ransforms

Build sent

Set non-manual features

Combined
words

Direct
t ranslat ion

Special
cases

Check
compounds

Output

Figure 4.2: Python-side, object oriented overview of the pipeline with transition between
sentence representations

Please refer to Figure 4.2 for a detailed representation of the highlighted part
of Figure 4.1, an overview of the translation process. The sentence is first passed
through the Stanford Parser which returns the following results:

1. The sentence with labelled Part of Speech tags

2. A syntax tree structure

3. The sentence dependencies graph

The sentence entered must be in correct English i.e. all punctuation must be
present, in order to be labelled correctly by the parser. Punctuation is then removed
from the syntax tree. For instance if we wanted to parse the sentence “I have a
younger brother and he doesn’t like tigers.”, then the three output components of the
parser would be

1. Tagging

I/PRP have/VBP a/DT younger/JJR brother/NN and/CC he/PRP does/VBZ
n’t/RB like/VB tigers/NNS ./.

36 Rule-Based MT in Python

2. Parse

ROOT

S

S

VP

VP

NP

NNS

tigers

VB

like

RB

n’t

VBZ

does

NP

PRP

he

CC

and

S

VP

NP

NN

brother

JJR

younger

DT

a

VBP

have

NP

PRP

I

3. Dependencies

nsubj (have-2, I-1) root(ROOT-0, have-2)
det(brother-5, a-3) amod(brother-5, younger-4)
dobj (have-2, brother-5) cc(have-2, and-6)
aux (like-10, does-8) neg(like-10, n’t-9)
conj (have-2, like-10) dobj (like-10, tigers-11)

The above can be graphically represented as

I have a younger brother and he does n’t like tigers

nsubj
det

amod

dobj
cc

aux
neg

conj

dobj

Dependencies are grammatical relations between words. For the example above,
we see that “I” is the subject of the verb “have”, and “his” is a noun possessive modifier
of “name”. The Stanford dependencies manual [9] details every dependency used in
the Stanford Parser, and all tags used in the Penn TreeBank are found at http:

//web.mit.edu/6.863/www/PennTreebankTags.html. There are more than 100 part
of speech tags, however to familiarise the reader we list a few of the most common
ones:

4. Methods and Implementation 37

• DT: determiners such as a, the, some etc.

• NN: the base tag form for nouns; this class includes subcategories NNS (plural
nouns), NNP (proper nouns) and NNPS (plural proper nouns)

• VB: base tag form for verbs; includes VBD (past tense), VBN (past participle),
VBZ (3rd person singular present) and more

• JJ: base tag for adjectives; includes JJR (comparative) and JJS (superlative)

• PRP$: possessive pronouns, such as his, their etc.

• NP: noun phrase tag; a noun phrase is usually composed of a noun and a number
of other elements but not a verb. For example “The small mouse” is a noun
phrase containing a determiner (DT) “The”, an adjective (JJ) “small” and noun
(NN) “mouse”

• VP: the verb phrase; it always contains a verb but may also have other tags as
we will show shortly

• PP: prepositional phrase; begins with a preposition (IN tag), for example

S

VP

PP

NP

NN

table

DT

the

IN

under

VB

Look

• ADJP: adjective phrase; it is formed by an adjective and particles (RB) such
as “very”

• ADVP: adverbial phrase; analogously to ADJP it contains an adverb and pos-
sibly other tags. The following example shows a sentence consisting of a noun
phrase and a verb phrase, with the latter also containing an adverbial phrase

38 Rule-Based MT in Python

S

VP

ADVP

RB

slowly

RB

very

NP

NN

house

DT

the

VBD

left

NP

NN

cat

JJ

large

DT

A

• SQ: inverted yes/no questions e.g. “Do you like pizza?” or the main clause of a
wh-question e.g. “Which one do you want?”

• SBARQ: direct questions, for example “Which one do you want?”

The data obtained from the parser, that is, the three components listed at the be-
ginning of this section (tags, parse and dependencies) are used to create Word objects
storing the text word, root, POS tag, position in the sentence, role (dependency)
as well as what sentence and dependency group the word belongs to. These Word

objects are our own representation of an English word. The root form of each word
is obtained using nltk’s word Lemmatizer, which, depending on the POS tag of the
word, extracts the basic form of the word. For example the verb “eating” has root
“eat” and the noun “children” has root “child”. The word category is extracted from
WordNet synsets, essentially sets of synonyms where words are interlinked by lexical
relations. The lexical category is what our notion of word category corresponds to.

i Word POS S-gp WN Category Root dep d-gp target neg
1 i PRP S_1 undefined i nsubj have False
2 have VBP S_1 verb.possession have root tiger False
3 a DT S_1 undefined a det brother False
4 younger JJR S_1 adj.all young amod 1 brother False
5 brother NN S_1 noun.person brother dobj 1 have False
6 and CC S undefined and cc have False
7 he PRP S_2 undefined he nsubj like False
8 does VBZ S_2 verb.social do aux like False
9 n’t RB S_2 undefined not neg like True
10 like VB S_2 verb.emotion like root tiger True
11 tigers NNS S_2 noun.person tiger dobj like False

Table 4.1: Word objects information

Table 4.1 omits the num_modified field that indicates whether a word is modified
by a number, such as in “the two boys” where “two” modifies “boys”. Each Word object

4. Methods and Implementation 39

is stored in an EnglishSentence object in a list. The sentence object also contains
information about sentence groups (S-gp in Table 4.1) with their associated tenses like
present, past and future. The syntax tree for the sentence is then processed to replace
each String representation of the words with actual Word objects; this way we can
directly alter the structure of the sentence whilst retaining all syntactic information.

4.1.2 Translation Rules

In order to make the system flexible and expandable without having to modify the
source code, all parts of the translation module, with the exception of the Special

Cases, use external user-defined rules to perform the translation. Taking inspiration
in the Apertium system (mentioned in Section 2.2), rules can be defined following a
standardised format which maps from the source to the target. For the tree transfor-
mation rules, we use the Context Free Grammar (CFG) representation of the trees
to define source and target mappings. The CFG is a collection of productions. The
mappings are written following the CFG productions syntax, where the right arrow
means the left side symbol generates the symbols on the right side. For this reason
the symbol used to define the transformation is a vertical line | instead of an arrow
→. Listing 4.1 is a snippet of the tree transformation rules used in the application.
The full list of rules can be found in Appendix A.

1 NP -> JJ NN∼ | NP -> NN∼ JJ
2 NP -> <> JJ NN∼ | NP -> <> NN∼ JJ
3 NP -> <> ADJP NN∼ | NP -> <> NN∼ ADJP
4

5 // will cover anything like "has died", "was born" i.e. auxiliaries
6 VP -> VB∼ <> VP | VP -> _ <> VP
7 // covers "He was sick", "He is tall" etc
8 VP -> VB∼ ADJP <> | VP -> _ ADJP <>
9

10 SQ -> VB∼ <> | SQ -> _ <> // removes the "have", "did" etc in questions
11 SQ -> MD <> | SQ -> _ <>
12 // handles direct questions introduced by a wh- word or wh-phrase
13 SBARQ -> WH∼ <> | SBARQ -> <> WH∼

Listing 4.1: Tree Transform rules snippet

In the first three lines are some examples of rules that handle noun phrase construc-
tions. The first two are specific cases of sentences where there an adjective is followed
by a noun. Let’s take NP -> <> JJ NN∼ | NP -> <> NN∼ JJ as an example. The
symbol ∼ indicates that any tag prefixed by the preceding text can be matched; with
NN this includes NNS, NNP, NNPS as shown in the previous section. A noun phrase
such as “The big cats” can be represented by the tree shown in Figure 4.3a. The

40 Rule-Based MT in Python

diamond ♦ (or <> characters in the ASCII format) means any kind of tag(s) will be
matched. In this example, ♦ will be matched with DT, a determiner. Figure 4.3b
shows the result of applying the given rule to the original tree. We can highlight the
tags that match the tree nodes to make the process more obvious:

NP→ ♦ JJ NN∼ | NP→ ♦ NN∼ JJ

NP

NNS

cats

JJ

big

DT

The

(a) Original syntax tree

→

NP

JJ

big

NNS

cats

DT

The

(b) Transformed tree

Figure 4.3: Tree transformation using rules: noun phrase

The rule on line 3 acts analogously but with an adjective phrase instead of just an
adjective. As was explained earlier, an adjective phrase ADJP could be formed by an
adverb + adjective such as “very big”. Let us illustrate another example from snippet
4.1, namely SQ -> VB∼ <> | SQ -> _ <> form line 10, which specifically handles
the removal of the auxiliary verb at the beginning of a question. The transformation
process is schematised in Figure 4.4.

SQ→ VB∼ ♦ | SQ→ ♦

SQ

VP

VBN

eaten

NP

PRP

you

VBP

Have

(a)

→

SQ

VP

VBN

eaten

NP

PRP

you

(b)

Figure 4.4: Tree transformation using rules: question

In the above, the underscore symbol means that any tag in the source (the
production on the left of |) at the same position as in the target (on the right) will
be removed. Note that more than 1 rule can be applied to a specific sentence. If we

4. Methods and Implementation 41

combine the examples from Figure 4.3 and 4.4 we obtain the sentence “Have the big
cats eaten?”, which would use both rules to transform the tree as shown in Figure
4.5.

SQ

VP

VBN

eaten

NP

NNS

cats

JJ

big

DT

the

VBP

Have

(a)

→

SQ

VP

VBN

eaten

NP

JJ

big

NNS

cats

DT

the

VBP

(b)

Figure 4.5: Combined example of tree transformation

All of the rules found in the file are created to bring the English sentence syntax
tree to a form that most closely resembles that of a BSL sentence. For example
knowing that in BSL an attributive adjective (see Section 2.2) comes before the
noun in order to differentiate it from a predicative adjective we may want to specify
mapping (1). Recall that the ∼ means any subclass of the tag will be matched.
Similarly if we know that a verb phrase begins with any verb (as implied by ∼) and
ends with another verb phrase, then the first verb can be discarded with the symbol
(2). This rule is used for sentence constructs such as “I have eaten”, corresponding
to me eat in BSL. Tree transformation rules are written in a descending order
according to their complexity to ensure a correct match going from very specific to
more generic cases.

NP→ JJ NN∼ | NP→ NN∼ JJ (1)

VP→ VB∼ ♦ VP | VP→ ♦ VP (2)

Rules for direct translation are similar and are divided in 3 subsets:

• Swap: in this category are keywords in a sentence around which words revolve.
Strictly speaking, any words that appear before the given keyword are placed
behind it, and any that appear after are placed in front. The keyword itself is
then removed from the sentence. For now the only keyword in this category is
“if”. A simple example would be

Tell me if you’re okay =
q

you okay tell me (∗)

42 Rule-Based MT in Python

It is apparent that the words in front of if are found at the back of the BSL
translation, while the ones following it are at the front and signed with a question
facial expression. This is due to rhetoric questions as explained in Section 2.1.4.

• Multiple words: these are mappings for words that appear together. For exam-
ple the sequence “. . . 25 years old” matches the rule year old → age. Again,
the symbol implies deletion.

• The rest of the direct mappings are categorised by POS tag. Examples of
personal pronouns rules are us → we and he → ix where ix stands for the
Index notation as explained in Section 2.1.1. Here, nouns are also mapped for
fingerspelling such as parents → -m-m-.

Listing 4.2 shows a snippet of the direct translation rules file; again, the full file is
found in Appendix A. The syntax used here is different: the right arrow → defines
the mapping i.e. anything on the left maps to the elements on the right, however
deletion symbol keeps the same function.

1 SWAP
2 if -> if // moves the sentence after the if before the cause
3 WORDS
4 there be -> _ _ // removes the existential there + is
5 if it -> _ _ // removes the it (SBAR)
6 have you -> _ you // remove any ’have you ’ questions
7 ...
8 PRP
9 i->me

10 he->ix // converts personal pronouns
11 him->ix // to index pointers
12 she->ix
13 her->ix
14 it->_
15 us->we
16 they->them
17 MD
18 will->_
19 NNS
20 parent->-m-f- // converts word to fingerspelling
21 NN
22 mom->-m-m-
23 ...

Listing 4.2: Direct translation rules snippet

In addition to the above there are also two files that complement the translation rules
by carrying extra information. The first contains data obtained from the SignBank

4. Methods and Implementation 43

website2 using a simple HTML web scraper. Figure 4.6a shows the website data and
4.6b the formatted result. The Python code for the scraper can be found in Appendix
B.2. Since each word and word sequence on the website corresponds to a single sign in
BSL, we use this data to separate word sequences and match them in the input text.
Any sentence that includes a sequence of words found in the signbank_multi.txt

file will see those words combined in a single sign. In 4.6b, the word “notice board”
would be signed as one unit and thus become notice-board in BSL.

(a)

1 about time
2 above all
3 ...
4 note down
5 not ever
6 not exist
7 not far
8 not give a damn
9 not have

10 notice board
11 not know
12 not know person
13 not like
14 not matter
15 not pay attention
16 ...
17 worn out
18 would not
19 year before

(b)

Figure 4.6: SignBank website data and formatted result

The second file contains compound morphemes. Recall from Section 2.1.2 that
a compound morpheme is a sign made up of 2 or more other free morpheme signs.
There are only a couple of these available at the time of writing this report and Listing
4.3 shows the contents of this file. The exact usage of this data is explained in more
detail in Section 4.1.3.3.

1 blood->red flow
2 believe->think true
3 check->see maybe
4 promise->say true
5 tiger->zebra animal

Listing 4.3: compound_morphemes.txt file

2http://bslsignbank.ucl.ac.uk

44 Rule-Based MT in Python

4.1.3 System Components

4.1.3.1 Syntax Tree Transforms

As was discussed in the Background Section 2.2.1, the TEAM project uses adjoining
tree grammars to convert the English sentences into an intermediate representation
from which the ASL translation is obtained. We use a similar approach but instead
of an interlingua, we keep the sentence words objects as they are, and after changing
the tree structure we obtain our definition of intermediate representation.

Algorithm 4.1 Applying tree transformation rules to the source sentence
Require: transform_rules is a list of Mapping objects with source and target

1: function ApplyTreeTransforms(sentence)
2: new_productions ← []
3: productions ← sentence.getProductions
4:
5: for each prod in productions
6: current_prod ← prod
7:
8: for each mapping in transform_rules
9: source ← mapping.Rebuild
10: match ← Match(source, current_prod)
11:
12: if match exists then
13: source_i ← makeSourceGroupIndexes
14: target_i ← linkSourceTarget(source, target, source_i)
15: new_target ← constructTarget(target, match, target_i)
16: modified ← true
17: current_prod ← new_target . Update the production
18: end
19: if modified is true then
20: prod_obj ← constructProduction(prod_string)
21: new_productions ← new_productions +prod_obj
22: else
23: new_productions ← new_productions + prod
24: end
25: grammar ← CFG(new_productions)
26: return generate(grammar)

Let us go through a step-by-step run of this fundamental algorithm in the pipeline;
line references are from Algorithm 4.1. Assume we would like to transform the follow-

ing sentence: “Have you seen the angry man?”, corresponding to
q

you see man angry.

4. Methods and Implementation 45

Before the function is called, all POS tags in the tree are made unique by adding in-
dices where necessary as this allows us to regenerate the new syntax tree without
ambiguities, that is, the CFG will only have one solution. Thus, the syntax tree
structure with root word representations would look like this

ROOT

SQ

VP

NP 1

NN

man

JJ

angry

DT

the

VB

see

NP

PRP

you

VBP

Have

We obtain the productions from the current syntax tree (line 3), and for the above
example we get the following CFG productions composed of Terminals (words) and
Nonterminals (tags):

ROOT→ SQ SQ→ VBP NP VP

VBP→ have NP→ PRP

PRP→ you VP→ VBN NP 1

VBN→ see NP 1→ DT JJ NN

DT→ the JJ→ angry

NN→ man

While iterating through each of the above productions we look for a rule in the
list of mappings (transform_rules) on line 8. For demonstrative purposes assume
production (3) and mapping rule (4) exist.

(production) VP→ VB VP 2 ADJP NNS 3 (3)

(source) VP→ VB ♦ NN∼ | VP→ NN∼ ♦ (target) (4)

Rule (2) essentially removes the verb and pushes the ending noun to the front of the
verb phrase keeping everything else in between. We would then expect the production
to become VP → NNS 3 VP 2 ADJP. Since we need to perform a string match

46 Rule-Based MT in Python

between the existing source and source stored in the rules, we rebuild the given
source with regex syntax (line 9). Thus the above source becomes

VP(?\d?)→ VB(?\d?)(.∗)NN([A− Z]∗)(?\d?)$

The above symbols replace the simple text characters used when writing the rules.
Each character has a specific meaning in regex. To begin with, VP(?\d?) will match
any string that begins with VP possibly followed by an underscore and a digit d.
This in fact corresponds to the desired effect of having a tag potentially followed by
a unique ID, as is the case for the angry man example. Then ♦ is replaced by (.∗)
which will match any string. Finally, the sequence NN([A − Z]∗)(?\d?)$ means
that any string beginning with NN and possibly followed by any number of letters
and/or followed by an underscore plus a digit will be matched. Any of the following
examples will produce a match for the regex rule just described: NN, NN 1, NNPS,
NNPS 2 etc. The match is then obtained and if successful, generates a group of
matches between the two sources. For the production (3), the groups would be (‘ ’,‘
’,‘ VP 2 ADJP ’, ‘ S ’, ‘ 3 ’) meaning that VP and VB yielded an exact match
(empty group), the ♦ tag matched to VP 2 ADJP and NN matched to the tuple
(S, 3). Afterwards, Source Match Indexes (SMI) are created. SMI can be defined as
follows: after a match, each element in the source yields match groups specifying the
“differences” between the original source element and given production. Any group
created is assigned an index starting from 1. In addition, any element from the source
that is marked with a ∼ is linked to a pair of indexes instead of just one since the
match can happen for both the subcategory and the unique tag ID. For the current
example we find SMI = [1, 2, 3, (4, 5)]. Figure 4.7 schematises the above explanation.

VP VP ?

VP VP VP_ 2 ADJP

NN

~

_ 3NN S

' ' ' ' VP_ 2 ADJP S _ 3

1 2 3 (4, 5)

Figure 4.7: Source Match Indexes derived from the match groups

Source and target elements are linked by rearranging the indexes according to
the target (line 14). Table 4.2 shows a run of the linking algorithm for the current
example. The index is increased by 1 at each iteration and actually represents the

4. Methods and Implementation 47

Target Source Index Backtrace TMI Source Chunks
VP VP 0 0 [] [VP, →, VB, ♦ , NN∼]

VB 1 0 [1] [→, VB, ♦ , NN∼]
NN∼ ♦ 2 0 [1, 2] [♦ ,NN∼]
NN∼ NN∼ 3 1 [1, 2] [♦ , NN∼]

2 0 [1, 2, (4, 5)] [♦]
[1, 2, (4, 5), 3] []

Table 4.2: Run of the LinkSourceTarget algorithm. TMI stands for Target Match
Indexes.

index of the element in the SMI. On the first step VP matches VP, so we fetch
element at position 0 from SMI, 1. Then matches VB (we assume that when is
found, the first element from the source is used) so we fetch element at position 1
from SMI, 2. Then NN∼ does not match ♦ , thus we set the backtrace. Backtrace is
used to reset the index once the element from the target is found in the source. In fact
NN∼ is found further on, so in the step following we match NN∼ and fetch element
at position 3 from SMI, (4, 5). After resetting the index (index - backtrace - 1) we
match ♦ to ♦ and fetch 3 from SMI at position 2, yielding TMI = [1, 2, (4, 5), 3]. We
then construct the new target by combining the original target (read from the file)
to the match groups using the TMI positions. For each tag in the target we find the
group of characters at the position from the TMI and append it to said tag (line 15).
Recall that the target for this example is VP → NN∼ ♦ .

Production Target Value in TMI Match Group
1 2 3 4 5

[] VP 1 [‘ ’ ‘ ’ ‘ VP 2 ADJP ’ ‘ S ’ ‘ 2 ’]
[VP] 2 [‘ ’ ‘ ’ ‘ VP 2 ADJP ’ ‘ S ’ ‘ 2 ’]
[VP, →] NN∼ (4,5) [‘ ’ ‘ ’ ‘ VP 2 ADJP ’ ‘ S ’ ‘ 2 ’]
[VP, →, NNS 3] ♦ 3 [‘ ’ ‘ ’ ‘ VP 2 ADJP ’ ‘ S ’ ‘ 2 ’]

[VP, →, NNS 3, VP 2 ADJP]

Table 4.3: Reconstruction of the target. Yellow highlights the current selection and green
those already selected.

From the run in Table 4.3 we find that VP is linked to character group 1, however
the group is empty, so nothing is appended. Then is matched to nothing, so we
don’t insert it in the new target: in fact means we do not want the Nonterminal
to be included in the new production. Then NN∼ is linked to the tuple (4,5) so we
fetch elements from the groups S and 3, which are both appended to NN yielding

48 Rule-Based MT in Python

NNS 3. Finally ♦ is linked to group 3 containing VP 2 ADJP, which replaces it.
The final production is VP → NNS 3 VP 2 ADJP, as was expected.

Once all productions have been exhausted and updated we generate a new CFG
to build the new transformed syntax tree (line 26). Matching rules for “Have you seen
the angry man?” are

SQ→ VBP NP VP matches SQ→ VB∼ ♦ | SQ→ ♦

NP 1→ DT JJ NN matches NP→ DT ♦ NN | NP→ DT NN ♦

And the new syntax tree for the intermediate representation is

ROOT

SQ

VP

NP 1

JJ

angry

NN

man

DT

the

VB

see

NP

PRP

you

4.1.3.2 Direct Translation

Before applying the direct translation rules as described in Section 4.1.2, we use
SignBank’s post-processed data to identify words that may be combined to form a
single sign. Note that these are not compound morphemes but simply expressions
that use multiple words in English, however only require 1 sign in BSL. For example
the sentence

He passed out =Index1 pass-out

While there are signs for both pass and out , they do not simply combine, instead
a completely different sign is used (see Section 2.1.4). Refer back to Figure 4.6 for a
visualisation of the web data before and after being processed. Words are replaced
one by one until exhaustion, the tree representation is dropped and the list of words
as a sequence is used instead. At this point we are using an IntermediateSentence

object, which contains said list of words and multiple methods to further modify the
data representation. It is important to note that any modification to the word is
recorded by its root; the original word representation is only kept as a reference.

4. Methods and Implementation 49

4.1.3.3 Special Cases

Special cases handle transformations that cannot be applied by handwritten external
rules. Though it is possible to model them similarly to the tree and direct transfor-
mation rules, due to time limitations these are performed through hard-coded rules.
The sentence is essentially iterated word by word and if a rule matches the condition
it is modified. Rules include and are not limited to:

• The replacement of the “in” and “at” prepositions with “where” to change the

sentence into a rhetoric question e.g. “I live in Spain” = me live
q

where

-s-p-a-i-n-

• The deletion of the word “that” if found in a clause introduced by a subordi-
nating conjunction (SBAR sentence group) e.g. “You think that I’m sad?” =

q
you think me sad

• The creation of a personal pronoun Index whenever a proper noun is the subject
of the sentence e.g. “Mary is my sister” = -m-a-r-y- Index1 my sister

• The shifting of time-related words from the noun.time WordNet category to-
wards the front of the sentence to mark the temporal topic (see Section 2.1.3.1)

After applying the special cases there are a few more operations required before
generating the output. Firstly, whenever an Index or possessive pronoun is inserted
as IX and POSS respectively, in order to differentiate between multiple actors in the
sentence, each is given a unique identifier; in previous examples this was represented
as Index, followed by a subscript digit e.g. Index2. This problem falls into a separate
linguistics field called coreference resolution and due to the time restrictions a more
primitive method was used to solve it. Essentially, because IX is inserted when a
proper noun is found, through the gender of the name and the dependency of the
word we can assign the correct ID to each actor. For example

Jane loved the letter Mike gave her =

-j-a-n-e- ix1 love letter -m-i-k-e- ix2 give ix1 (∗)

The analysis starts with 3 “empty” indices ix and using the information from the
name Jane and the preposition “her” we can link them together, assigning the same
index to each: ix1. The remaining actor in the sentence is Mike which, being a
different gender, is assigned another index, ix2.

50 Rule-Based MT in Python

Secondly we check for compounds using a separate file where each sign (in BSL
form) maps to two or more other BSL signs to form compounds. This is done sep-
arately from direct translation because the gloss for compound morphemes still rep-
resents the original idea: if promise is a compound formed by the signs say and
true we still gloss promise but sign the other two (see Section 2.1.2 for details).
Any Word object that is a compound is assigned the free morphemes that form it to
mark it as such. Taking the example from Table 4.1, at this point in the processing
timeline the Word objects stored in the IntermediateSentence would look like what
is depicted in Table 4.4. Recall that we are interested in the root of each word and
not the word values themselves.

i Word POS S-group Root dependency target neg compound
0 i PRP S_1 me nsubj have False
1 have VBP S_1 have root tiger False
2 brother NN S_1 brother dobj have False
3 younger JJR S_1 young amod brother False
4 he PRP S_2 ix_1 nsubj like False
5 n’t RB S_2 not-like neg like True
6 tigers NNS S_2 tiger dobj like False zebra animal

Table 4.4: Word objects after transformation

4.1.3.4 The Container object

A very important characteristic of BSL is the parallel signing of manual and non-
manual features. Not only can facial expressions and eye gaze change the meaning of
a word (Section 2.1.6.3), but they can also be used to set the time (Section 2.1.3.1)
and differentiate elements in the sentence (Section 2.1.6.2). At any given time during
signing, a manual sign may be accompanied by 0 or more non-manual features. The
following sentence exemplifies this concept:

I’m not going to the beach today because it was raining (a)

= today me
neg

not go beach
q

why rain (∗)

We can see that a question is being asked with why and a negation on the action
not go. However, there are more elements that the gloss cannot represent. Let us
imagine each non-manual feature as a container of one or more words. Each container
may also be within another container. The previous glossed example (a) would be

4. Methods and Implementation 51

represented as (1) below, however some additional features that are extra information
to the signer have to also be stored, thus yielding (2)

today me (not go)[neg] beach (why)[q] rain (1)

today (me)[hn] (not go)[neg] (beach)[1] ((why)[q] rain)[past] (2)

In (2), where the extra features are included, hn stands for head nod and past means
the action is signed with a past tense-associated expression (explained in Section
2.1.6). The 1 tag also defines a group and in the animation module, this will be
interpreted as a pause between the signs for beach and why. These Container

objects work similarly to a Rose-Tree data structure, where each node (the container)
may have 1 or more children that can also be containers themselves. Building of this
container data structure is done in the setNonManualFeatures method in the
IntermediateSentence class (see Figure 4.2).

4.1.3.5 Output

The final step of the Machine Translation module is to generate the BSL output.
At this point all the data is set to a BSLSentence object that contains the methods
to create the outputs. Given the example (a) above, the output would consists of 3
separate parts:

1. A textual representation: as shown above

2. A HTML Gloss representation:
1 TODAY
2 ME
3 <over>
4 NOT
5 GO
6 </over>
7 ^{neg}
8 BEACH
9 <over>

10 WHY
11 </over>
12 ^q
13 RAIN

Listing 4.4: Gloss HTML format

3. A JSON format:

52 Rule-Based MT in Python

1 (// manual features and file paths
2 [{ "index": 0, "name": "today", "path": "words/t" },
3 { "index": 1, "name": "me", "path": "words/m" },
4 { "index": 2, "name": "not", "path": "words/n" },
5 { "index": 3, "name": "go", "path": "words/g/verbs" },
6 { "index": 4, "name": "beach", "path": "words/b" },
7 { "index": 5, "name": "why", "path": "words/w" },
8 { "index": 6, "name": "rain", "path": "words/r/verbs" }
9],

10 { // non -manual feature animation files
11 "anims": ["hn", "neg", "past", "q"]
12 }, // concurrent animation sequence
13 [{ "start": [], "end": [] },
14 { "start": ["hn"], "end": ["hn"] },
15 { "start": ["neg"], "end": [] },
16 { "start": [], "end": ["neg"] },
17 { "start": [], "end": [] },
18 { "start": ["past", "q"], "end": ["q"] },
19 { "start": [], "end": ["past"] }
20],
21 [// modifier activation
22 { "modifiers": [] },
23 { "modifiers": [] },
24 { "modifiers": [] },
25 { "modifiers": [] },
26 { "modifiers": ["pause"] },
27 { "modifiers": [] },
28 { "modifiers": [] }
29]
30)

Listing 4.5: JSON format

The HTML gloss is obtained simply by replacing any occurrence of (with an opening
over tag and any occurrence of [with the sup tag, and analogously for the closing
tags. The over tag will set an overline style on any string within it, while the sup

tag sets its content to a superscript ; this is all done through CSS styles. Individual
signs are also wrapped in a span tag with unique IDs corresponding to their position.
This is later used by JavaScript to highlight the words in turn as they are signed (see
Figure 3.2 in Chapter 3).

The JSON format contains much more information and it is what is most impor-
tant for the animation. It is composed of a tuple of 4 objects:

1. A list of objects containing an index, the value and path of a word sign. The
index is necessary since fingerspelled words are loaded as separate files, though
the index of the word is the same for all letters in said word as exemplified
below for the sentence me think -b-o-b- ix1 nice

4. Methods and Implementation 53

1 { "index": 0, "name": "me", "path": "words/m" },
2 { "index": 1, "name": "think", "path": "words/t/verbs" },
3 { "index": 2, "name": "B", "path": "alphabet" },
4 { "index": 2, "name": "O", "path": "alphabet" },
5 { "index": 2, "name": "B", "path": "alphabet" },
6 { "index": 3, "name": "ix_1", "path": "words/i" },
7 { "index": 4, "name": "nice", "path": "words/n" }
8

2. A list of animation files to be loaded for non-manual features: we first load
all necessary files to be played in parallel with signs and then arrange them
according to the 3rd object.

3. A list of objects where every object position represents a word in the first list.
At any index position, 0 or more non-manual signs may start or stop playing.
This parameter is explained more in depth in the upcoming Section 4.2.3.2.

4. A similar list to the above, but only for modifier features. These include pauses
between groups of signs, superlative and comparative adjective modifiers. These
are in a separate list because instead of playing different signs concurrently,
they modify the sign animation at the index they appear in. The details of sign
modifiers are explained in Section 4.2.3.3.

54 Animation in ThreeJS

4.2 Animation in ThreeJS

The following section will discuss the techniques used to animate the virtual agent
displaying the signed result. It will cover the creation of a rigged model in Blender,
the animation and exporting process into a JSON format and the implementation of
the animation engine to display it. Figure 4.8 highlights the components of the system
covered here.

Front End

MT Animat ion Engine

Direct
Translat ion

Animat ion Loop

Load fi les

Animate

Special Cases

Generate Ouput Receive Data

JSON

Send Data

Flask

English sentence

Text Gloss

User input

HTML Gloss

Tree t ransforms

Figure 4.8: System outline: Animation Engine highlighted

4.2.1 Blender

Blender is a general purpose CAD application to create 3D renderings and animations.
It was extensively used in the Computer Animation course in Michaelmas Term to
create complex skeletal animations for the practicals and final exam. In addition, its
compatibility with ThreeJS through an exporting plug-in made it the best choice of
animation software for this project. Blender was used to rig and animate the avatar
model that would display the sign animations.

4.2.1.1 Model

In the Computer Animation course we used an open-source avatar model called Lud-
wig (Figure 4.9a). While it would have been convenient to use it for this project
having a pre-set skeleton structure, it was not compatible with the Blender plug-
in to export to ThreeJS. Consequently, since it would have been necessary to re-rig
the model, the opportunity was taken to find a more “appealing” avatar. Elena
(displayed in 4.9b) is one of the most visually pleasing free models available online

4. Methods and Implementation 55

(from http://www.blendswap.com/blends/view/69967). Unfortunately, being also
pre-rigged it was also not compatible with ThreeJS’s export plug-in. Thus it was
necessary to remove the skeletal structure and manually rig the model.

(a) (b)

Figure 4.9: Potential 3D avatars - Ludwig and Elena

4.2.1.2 Skeletal Animation

Skeletal animation for human figures is the process of constructing a hierarchical
bone structure (armature) which is afterwards attached to the overlaying skin, and
subsequently animated. Rigging describes the action of building a skeleton structure
made of virtual bones on a previously modelled object. These bones are not rendered,
in the sense that they are not visible in the output, instead they move parts of the
object they are assigned to. The skin, technically called mesh, of the model object is
made of many interconnected vertices that form faces. Groups of faces are assigned
a colour or material to modify the appearance of the surface. When rigging a model,
each bone is assigned 0 or more vertices and its motion affects the vertex positions
according to a specific weight. In Figure 4.10 are depicted two virtual bones i and
j. The square box represents the mesh, each bold dot designates a vertex and the
extremes of each dotted triangle represent a joint. The weight that a bone exerts on
a vertex decreases as the distance between it and the surrounding vertices increases.
This even distribution of weights produces a smooth curve between joint rotations.

56 Animation in ThreeJS

Figure 4.10: A visualisation of the weight falloff; from http://what-when-how.com

The weight distribution is normally performed automatically in Blender once the
skeleton structure is completed, though some manual tweaking is required, especially
with small or detailed parts of the body such as the hands and the face. When
performing the rigging, the model is first imported and is set to a pose-position i.e.
with the arms pointing sideways away from the body. The skeleton is then constructed
bone by bone until a satisfactory freedom of movement is achieved. Given that
it must be a hierarchical structure, each non-terminal bone has at least 1 child,
except for Inverse Kinematics3 (IK) bones which indirectly modify the bones they
are assigned to. These IK bones include both elbow and hand pairs elbow_IK.R(.L)
and arm_IK.R(.L) as well as those bones to arc the fingers. Figure 4.12a shows the
partial bone structure for the Elena model with an x-ray view, and Figure 4.12b shows
a more exhaustive textual representation. There are additional bones that are not
shown in the representation because of redundancy. Nonetheless, to make it clear,
each finger bone such as the thumb or index also has 2 more children to simulate the
phalanges, and while each finger has 3 specialised bones to move its phalanges, it is
also given 1 IK bone to automatically arc the fingers. Figure 4.11 shows a close-up
screenshot of the hand bones as seen from the Blender viewport with the IK fingers
highlighted. Rotating any of those bones closer or further away from the palm of the
hand will extend or retract the finger bones.

3The inverse of Forward Kinematics: given a point or trajectory by the IK bones, the joint angles
required for the end effector (the affected bone) to reach a target are automatically calculated.

4. Methods and Implementation 57

Figure 4.11: Close up of the avatar hand and underlying bones. In light-blue are IK finger
bones.

(a)

Pose

hips

spine_01

spine_02

neck

head

shoulder_L

arm_upper

arm_lower

wrist

hand

thumb

index

middle

ring

pinkie

shoulder-R

as above

eye-target

(b)

Figure 4.12: 3D model bone structure

In Figure 4.12a the bones affected by an IK bone are highlighted in yellow. One
may move the arm_IK bone to lift the hand directly and making the upper and lower
arms follow, without having to animate those manually. In other words, IK bones

58 Animation in ThreeJS

are not attached to any part of the mesh, instead they affect other bones which,
in turn, do modify the mesh. This is solely done to assist during the animation
process as the ThreeJS plug-in exports animations for all bones regardless of their
type. In this particular case the model is missing all leg bones as they are unnecessary
within the scope of the project, and their absence does remove some processing load.
To animate a bone, we first select it and add a keyframe at a given point in time.
Usually a starting keyframe is added for any bone which needs to move from the
initial position (both arms down against the sides) to the next. We then select a
new position for the bone and set a new keyframe at another time step. The default
interpolation value between keyframes is Bezier and was kept that way, since it makes
gestures look reasonably more authentic to real-life movements than Linear (Figure
4.13). Every sign is animated individually and then set to textual format through the
JSON exporter plug-in.

X
,Y

,Z

Keyframes

0 1 2 0 1 2 33

Figure 4.13: Bezier vs. Linear interpolation. The XYZ axis represents the values of each
axis in 3D space.

4.2.2 JSON Format and JS Formatter

When exporting with ThreeJS, one must select all objects that should be included
in the .json file, in our case being the mesh and the armature. What results from
the export is a large file (≈ 1Mb) containing all the information about the selected
objects. The following code snippet shows an overview of the type of data contained
in a .json file from the exporter

1 {
2 "textures":[...],
3 "images":[...],
4 "object":{
5 "matrix":[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],
6 "children":[{
7 "name":"body",
8 "matrix":[...],
9 "type":"Mesh",

10 "material":"B29BD348 -16B8 -30D6 -A840 -62213DC577EE",

4. Methods and Implementation 59

11 "geometry":"9142F0FA -03F6 -3018 -AC00 -EF02F6717A93"
12 }],
13 "type":"Scene"
14 },
15 "materials":[...],
16 "animations":[...],
17 "geometries":[{
18 "data":{
19 "normals":[...],
20 "name":"body_plane.001Geometry.1",
21 "vertices":[...],
22 "influencesPerVertex":2,
23 "bones":[...],
24 "animations":[...],
25 "faces":[...],
26 "skinWeights":[...],
27 "skinIndices":[...]
28 },
29 "materials":[...],
30 "type":"Geometry"
31 }]
32 }

Listing 4.6: JSON file for ThreeJS

The first level of attributes holds information about the scene, the objects it contains
and the global variables such as textures, materials and geometries. The object on
line 4 defines the base for the mesh of the avatar, the identity matrix and holds the
IDs of the materials and geometries that belong to it. geometries on line 17 holds
all 3-dimensional objects of the scene; in this case there is only 1. Here are defined
all geometrical features like faces and their normals, the vertices that make them up
as well as the weights for the bones that affect them: by default only 2 bones can
affect a specific vertex (line 22). The other very important information is stored in
the bones and animations attributes. We will keep these two aside for now.

As will be explained in more detail in Section 4.2.3, since we wish to keep model
and animations separated to be able to import the animations as and when needed,
the above snippet with the model data does not contain any animations. All bones are
present but do not move. Any new animation file should thus contain information
about which bones move, and when and where they move. Here is where the JS

Formatter comes into play. As every export of a sign from Blender takes up a lot of
space due to the large number of vertices and faces stored in it from the model, it is
essential to remove this unnecessary and redundant information and only keep what
is truly required. As such, a JSON to JS data compression program was written in
Java and consists of a simple file chooser application where one can pick a .json file,

60 Animation in ThreeJS

choose a destination directory, purge it of the extra data and convert that .json file
into a .js file4. The ThreeJS exporter for Blender does not have any sort of options to
ignore immobile bones, so the program was written from scratch. This additional step
is required to substantially decrease the size of files, essentially compressing them to
improve loading times and reduce the network traffic when dealing with animations.
The Convert found in the formatter function is described in Algorithm 4.2 and is
what deals with the removal of unnecessary data.

It is interesting that a plug-in with similar functionality does not exist yet, as by
removing unnecessary bones we enable the animation of multiple bones in the same
skeleton but from different clips. Imagine that two clips, A and B exist, and both
contain animations that apply to all bones in the skeleton. Suppose that A contains
animations to move the left arm, and B the right arm. However in both cases all bones
are assigned keyframes because of the way Blender exports JSON files, thus in A the
right arm bones are “animated” as still i.e. they do not move, and analogously in B
for the left arm. If both clips were to be played simultaneously, the animations from
each would be assigned a weight of 0.55. Hence what would result is an inaccurate
animation as all the joint would only complete half of the expected rotations. Thus
by removing all the keyframes that do not affect the bones’ movements we achieve
parallel clip animations with 100% weights.

1 "bones":[{
2 "name":"arm_IK.L",
3 "parent":-1,
4 "scl":[1,1,1] // scale
5 "rotq":[0,0,-0,1], // rotation quaternion
6 "pos":[0.625183,2.37131,0.041744] // position
7 },{ ... },{ // all other bones
8 "name":"eye.L",
9 "parent":8,

10 "scl":[1,1,1],
11 "rotq":[0.000658,0.711393,-0.702794,-0.000655],
12 "pos":[0.167223,0.180856,-0.319214]
13 }],
14 "animations":[{
15 "hierarchy":[{
16 "parent":-1, // one for each bone, following bones order
17 "keys":[{ // one key for each time step
18 "pos":[0.625183,2.37131,0.041744],
19 "scl":[1,1,1],
20 "rot":[0,0,-0,1],

4Strangely, ThreeJS reads .js instead of .json. The file structure remains a JSON attribute tree,
it is only a matter of changing the extension.

5The weight is evenly distributed by the number of animations that apply to a bone. If there
were 3 simultaneous clips the weight would be 0.3.

4. Methods and Implementation 61

21 "time":0 // time step and above attributes for bone
22 },{ ... },{ // all other keys
23 "pos":[0.625183,2.37131,0.041744],
24 "scl":[1,1,1],
25 "rot":[0,0,-0,1],
26 "time":1.23333 // last time step
27 }]}, {
28 "parent":-1,
29 "keys":[...]},
30 ... // all other anim data
31],
32 "name":"love", // name of particular clip
33 "fps": 60, // frames per second
34 "length":1.23333 // all time steps end on this time
35 }]

Listing 4.7: animation and bones attributes for the sign love

Listing 4.7 details the contents of the bones and animations attributes. We can
see on line 21 and 26 that for each time step there are attribute values for each bone:
depending on the export options, timesteps can go frame by frames or skip some to
reduce file size. Given 60fps and a time length of 1.23333 seconds, the total number of
frames is 74. With 11 keys per bone, the information is being updated approximately
every 7 frames. From any newly exported file containing the information shown in
Listing 4.6 we get the bones and animations. For each bone and for each keyframe
we check if either the location or rotation changes. If it does we keep the bone and
animation associated with it, otherwise both are removed. This decreases the file
size from 1Mb to approximately 30kb depending on the number of bones moved and
duration of the whole clip. The output of Convert is similar to what is shown in
Listing 4.7 above, in that it contains the bones and animation attributes but includes
only the bones that move, and a slightly longer duration (line 8 in Algorithm 4.2).
The file that results from the conversion is what will be read by the animation engine
to display the signs.

62 Animation in ThreeJS

Algorithm 4.2 Removing unnecessary data from animation file

1: function Convert(file)
2: object ← ReadFile(file)
3:
4: bones ← object.geometries.data.bones
5: animations ← object.geometries.data.animations
6: keyframes ← animations.hierarchy
7:
8: animations.length ← animations.length + 0.3
9: for each i in bones
10: still ← true
11: location ← keyframes[i].keys[0].loc . First timestep
12: rotation ← keyframes[i].keys[0].rotq
13:
14: for each key in keyframes[i].keys
15: if location 6= key.loc or rotation 6= key.loc then
16: still ← false
17: break
18: end
19: if still is true then
20: bones.remove(i)
21: animations.remove(i)
22: i ← i−1
23: end
24: return object(animations, bones)

4.2.3 Animation Engine

This section details the JavaScript implementation of the animation engine, includ-
ing all setup required to build a 3D scene, the animation loop and algorithms to play
multiple clips in parallel.

The ThreeJS website contains a large amount of fully working examples to get
started with creating simple 3D scenes. It also includes help on how to import mod-
els with animations from external files. The library supports multiple types of file
formats, such as Object (.obj), Filmbox (.fbx), Collada (.dae) and more. To be-
gin with, Collada was the chosen data format to store the model and animations,
primarily because it is highly flexible whilst keeping a reasonable file size. In fact,
Collada uses XML and when storing animations, instead of defining the attributes
for each bone at every n timesteps, it only keeps the data for the starting and ending

4. Methods and Implementation 63

positions at every keyframe instead. Unfortunately, whilst developing the engine, it
was found that the Collada support for ThreeJS was not compatible with the included
AnimationMixer module used to play clips. Thus it was dropped for the alternative
JSON format instead. The Collada testing was performed very early in the develop-
ment of the project. In fact, many of the 3D techniques described in the next pages
had been approved before designing the interdependent translation modules. It was
deemed advantageous to ensure the correct behaviour of essential elements such as
the 3D animation before attempting to create the underlying algorithms.

In WebGL, and consequently in ThreeJS, the following elements are required to
create and render a scene:

• The scene itself: containing all 3D objects to be rendered

• One or more virtual cameras: these define the viewports of the scene and are
what displays the results on the screen

• One or more lights

• A renderer: this is what does most of the processing. The WebGL rendering
pipeline is schematised in Figure 4.14, although it is virtually the same for all
renderers.

In our own implementation of a scene, we find the following objects:

• Two directional lights and an ambient light to achieve proper illumination of
the avatar

• A perspective camera set to view the model from the front by default

• A camera target used to point the camera towards the avatar when not in
“fingerspelling” first person view

• The model loaded from an external file

An external OpenGL shading language script is included in the HTML file to get a
“skydome” effect with a white ground and blue sky gradient; this is only done for
aesthetic purposes.

64 Animation in ThreeJS

Scene Ent i t ies

coordinates

colours and mater ials

normals and ver t ices

Ver tex Buffer Objects

Ver tex Shader

Fragment Shader

Framebuffer

Creat ion of objects

- Transform the camera

- Apply l ight ing

- Check which ver t ices are visible (cl ipping)

Output the pixels

Apply textures and mater ials

texture indices

Figure 4.14: WebGL rendering pipeline

We will now discuss the steps taken by the JavaScript side of the application from
initialisation to loading new animations after sending a translation request.

4.2.3.1 Scene Initialisation

Whenever the webpage is first opened, the JavaScript file is called and the scene
is built. To begin with, all of the aforementioned elements are created, then the
model and the two initial animations, idle.js and blinking.js are loaded. Loading
the model requires two steps: first the file is read and geometry data is separated
from the materials data and both are stored in different variables. Next, using the
native ThreeJS ObjectLoader method both are combined to create a SkinnedMesh,
the technical term used in ThreeJS to define a rigged model. The sequence of methods
used to load the model is only called once, however any code used to load the initial
animations is recalled each time a new translation response is received. The animation
loading sequence works as follows:

1. Given a url of animation files in the same format as described in Listing 4.5,
the data is converted into JSON using jQuery’s $.getJSON method. The result
of this operation is stored in an array of promises6.

2. Once all promises have been loaded, we iterate over them and three things may
happen:

(a) If the promise returns a 200 code, then the data was loaded correctly and
an AnimationClip object is created and added to the list of clips.

6Defined as “a single asynchronous operation that hasn’t completed yet, but is expected in the
future”.

4. Methods and Implementation 65

(b) If a 404 code is returned, then the previous method is called again but
with the /verbs path removed. This is done because sign files are stored
alphabetically and some signs are identical for both the verb and the noun
e.g. love. Recall from Listing 4.5 that any sign animation is given as an
object with multiple attributes. Using the love example, the animation
object for the verb would be { "index": 2, "name": "love", "path":

"words/l/verbs" }. However since the sign for love is the same for both
the verb and noun, we only store one version in the words/l path. See
Figure C.4 in the Appendix for a complete structure of the file storage.

(c) If a 404 code is returned twice, then a default unknown sign clip is created.
This simply loads an animation displaying the model with a confused facial
expression and with both hands and shoulders raised (mimicking a “I don’t
know” look).

3. If the clips are loaded in the initialisation stage, then both are started by calling
the play() methods. Otherwise additional methods are called to set up the
non-manual features clips.

4.2.3.2 Handling non-manual features

As was discussed in Section 4.1.3.5, the server side returns 3 distinct results: a textual
gloss, HTML gloss and JSON representation. In the latter we find information about
the sign files and non-manual features that need to be loaded, as well as when they
have to be played. Using the second argument of the JSON object, we get the names
of all non-manual features required for a specific sentence. The following example

I will not go to the beach today because it was raining

= today me
neg

not go beach
q

why rain (∗)

yields the following arguments
1 { \\ second arg
2 "anims": ["future", "hn", "neg", "past", "q"]
3 },
4 [\\ third arg
5 { "start": ["future"], "end": [] },
6 { "start": ["hn"], "end": ["hn"] },
7 { "start": ["neg"], "end": [] },
8 { "start": [], "end": ["neg"] },
9 { "start": [], "end": ["future"] },

10 { "start": ["past", "q"], "end": ["q"] },
11 { "start": [], "end": ["past"] }
12]

66 Animation in ThreeJS

The files for future, hn, neg, past and q are obtained and loaded in a similar fashion
to what was just discussed. Then using the third argument of the JSON object we
replace each newly created AnimationClip object in the data structure so that it can
be accessed directly. This operation is performed with a simple loop and an equality
check for the clip name. Let us also take the opportunity to better explain this third
argument in detail.

0
today

1
me

2
not

3
go

4
beach

5
why

6
rain

qhn

pastfuture

neg

Figure 4.15: A BSL sentence and visualised non-manual sequence

Given a sentence with its container objects set, the concurrent events of non-manual
features can be displayed as shown in Figure 4.15. Because the animation engine
will play one sign at a time in order of appearance, it was necessary to find a data
structure that could easily represent the concurrency of this sequence. The following
code shows the above representation in a JSON-compatible format. Each pair in the
list contains two inner lists: the first list determines the clips that should start playing
and the second those which should stop.

[

0

([future], []),

1

([hn], [hn]),

2

([neg], []),

3

([], [neg]),
4

([], [future]),

5

([q, past], [q]),

6

([], [past])]

4.2.3.3 Animation Loop

After loading all files, the app will be running in a loop, where the same initial
animations (idle/blink) are repeated until the user requests to make a translation.
The animate() method represents this loop, where booleans are constantly checked
to ensure the correct methods are called. There are 4 important tests happening here:

• If display_translation is true, then the boolean first_step is set to true
to activate the clips that were previously loaded. The boolean to display the
translation is always set after the translation response has been received and all
clips have been loaded.

4. Methods and Implementation 67

• If any of the step variables is set to true, these being first_step, continuous_step,
final_step we check if the clips need to be paused, if the automatic camera
setting is enabled and call the methods to play the non-manual features if nec-
essary.

• If the cancel button is pressed then all manual and non-manual clip variables
are reset.

• If we have reached the end of an animation sequence for a particular sentence,
the non-manual variables and the interface settings are reset.

In addition at the end of this loop there is the call to the render() method, which
takes care of updating the camera, the renderer itself, the statistical data such as
framerate and the Tween library7 used for altering modifier clips (see the following
Section 4.2.3.4). Whenever a new response from the server arrives, the files are loaded
and the sign clips are played in sequence. The full pseudocode for this sequence can
be found in Appendix B.3. Because the rendering implementation makes constant
calls to the animate() method, each step in the display loop must be entered and
exited through booleans otherwise the clips would start playing every time a render
call is made, around every 10-15ms [27].

4.2.3.4 Non-manual features and modifiers

The loop described above also takes care of calling the methods for playing non-
manual features and altering sign animations whenever a modifier is involved. Fol-
lowing the structure described in Section 4.2.3.2, we access the two lists at the index
given by the main loop. Then if a clip is found in the start list, it is played. Alter-
natively, if a clip is found in the end list, it is ended by simply calling the fadeOut()

method. The loop for modifiers is separate and analogously to the above it accesses
modifier commands from the given index position. The 3 types of modifiers and their
effects on animations are shown in Table 4.5. These effects are applied using the Tween
library, which allows us to interpolate between any value of any object in JavaScript.
To begin with, whenever a modifier is found, the clip assigned to it is paused, and
then its time-scale is changed according to the parameter of the modifier. Finally the
time-scale is interpolated following a specific delay and easing, though these do not
apply to the pause modifier.

7http://www.createjs.com/tweenjs

68 Animation in ThreeJS

Modifier type Duration (δ) Start timescale End timescale Delay Easing

Comparative
(dur − 0.3)× 1000

α
α× 0.2 α× 1.5

δ

3
Quadratic

Superlative
(dur − 0.3)× 1000

α
α× 0.1 α× 1.7

δ

1.5
Quartic

Pause dur+ =
0.2

α
n/a n/a n/a n/a

Table 4.5: Modifier parameters. dur stands for the clip’s original duration and α for the
global animation speed (range between 0.2-2.0)

4. Methods and Implementation 69

4.3 Cross-language Communication with Flask

Front End

MT Animat ion Engine

Direct
Translat ion

Animat ion Loop

Load fi les

Animate

Special Cases

Generate Ouput Receive Data

JSON

Send Data

Flask

English sentence

Text Gloss

User input

HTML Gloss

Tree t ransforms

Figure 4.16: System outline: Flask Framework highlighted

Here we very shortly touch on the communication between JavaScript and Flask.
Flask is a microframework for Python that allows bidirectional communication be-
tween the server and browser as depicted in Figure 4.16. The web application is
essentially driven by Python: when the website is uploaded to the Heroku server,
the Flask app is created. From here the app route is defined. The route that points
to the root (line 7 in Listing 4.8) contains the method that is called when the root
address of the website is entered, which returns the main HTML page where all of the
JavaScript imports are made. Then any route created by Flask will point to where
JavaScript will send the request from. In this case on line 12 in Listing 4.8 the route
is /_process_text, thus JavaScript sends the request to the same address as can be
seen on line 5 in Listing 4.9. When Python is done processing the data, it is returned
and can be further exploited by JavaScript.

1 # Initialize the Flask application
2 app = Flask(__name__)
3 # Initalise the translating analyser
4 analyser = Analyser(app=True)
5

6 # This route will show a form to perform an AJAX request
7 @app.route(’/’)
8 def index():
9 return render_template(’indexPage.html’)

10

11 # Route that will process the AJAX request , result as a proper JSON
response (Content -Type , etc.)

70 Summary

12 @app.route(’/_process_text ’)
13 def process_text ():
14 text = request.args.get(’input_text ’, ’’, type = str)
15

16 sys.stdout = open(devnull , ’w’) # suppress printing
17 data = analyser.process(text)
18 sys.stdout = sys.__stdout__ # reset printing
19

20 # data [0] is gloss , data [1] is html , data [2] is json
21 return jsonify(result =(data[1],data [2]))
22

23 if __name__ == ’__main__ ’:
24 app.run()

Listing 4.8: Python and JavaScript communication, Python code

1 function beginTranslate (){
2 var text = $(’input[name=" input_text "]’).val();
3 if (Interface.current_text != text) {
4 // get the text from the textbox and send it to python
5 $.getJSON(’/_process_text ’, {
6 input_text: text
7 }, function (data) { // on finish request receive data
8 // print the result on screen (gloss)
9 Interface.setGloss(’bsl’, data.result [0]);

10 ... // read clips and other data ...
11 }
12 }
13 }

Listing 4.9: Python and JavaScript communication, JavaScript code

4.4 Summary

In this chapter we discussed the implementation of the Machine Translation module
with Python, the different components that make it up and showed how an English
sentence is transformed into BSL. The biggest challenge was finding a method that
could properly capture all syntactic and semantic elements of BSL. In fact, while
the signs themselves are crucial, all non-manual features also play a meaningful role
when signing. Furthermore, we described the virtual avatar and how it is animated
in Blender, the exporting process and the file format read by JavaScript. Substantial
amount of work went into creating complementary software to assist the translation
and animation process, such as the HTML scraper for obtaining additional translation
data and the JS Formatter to remove unnecessary objects from the Blender animation
exports. It was also shown how the animation engine implemented in ThreeJS reads
the animation files and the way they are displayed in a concurrent sequence when

4. Methods and Implementation 71

a translation request is made. Finally we touched on the communication between
the two modules using the Flask microframework. All of the objectives mentioned
in Section 1.2 have been met, however to assess the effectiveness of the implemented
system, a formal evaluation is necessary and is discussed in the following chapter.

72

Chapter 5

Evaluation

In this chapter, the evaluation for the system has been divided into two main parts:
a linguistics perspective to determine the accuracy of the translation according to a
small dataset of reference translations, and a user testing feedback obtained through a
survey. In addition, it was possible to get two domains experts: Rachel Sutton-Spence,
co-author of the book The linguistics of British Sign Language: an Introduction and
Adam Schembri, Lecturer in Sociolinguistics at the University of Birmingham to
review the system and provide constructive feedback.

5.1 Translation

Before discussing the results for translation accuracy, it is necessary to understand
that the current evaluation methods are not entirely fitting when compared to the
evaluation of written-written translation. While glosses allow for an easy evaluation
approach using string similarity metrics, this representation does not properly encap-
sulate all the linguistic information that is normally carried through signing [23]. In
fact, the accuracy evaluation only takes into account the exact gloss representation,
and ignores all visual-spatial knowledge. In other words, it is possible to inspect the
correct use of signs in a translation, including the parallel non-manual features, how-
ever it is difficult to automatically evaluate how “good” an animation for a particular
sign is.

Section 5.2 gives a comparison of the system’s performance and compares those
described in the Background Section 2.2.1. However, due to the little amount of
formal evaluation results provided, more related work is presented here which, in turn,
includes evidence of empirical results. These other projects have not been discussed
in the background because their implementation closely follows that of previously

73

74 Translation

mentioned methods and focuses on the translation of sign languages not derived from
English.

5.1.1 Evaluation Metrics

BLEU (BiLingual Evaluation Understudy) is a language-independent precision met-
ric for translation that compares a candidate translation (the hypothesis) with one
or more reference sentences [25]. It is currently the most popular evaluation metric
for translation in the field of Computational Linguistics. Based on a modified n-gram
precision metric p, it counts the maximum number of times a word appears in any
of the reference translations. The count of each candidate word is then reduced by
the maximum count and a penalty is added for brevity of sentences i.e. the shorter
the sentence the more impact any incorrect word placement will have. It is typically
applied over a whole corpus and not between single sentences, although a Smoothed
BLEU method exists for this task [6]. For this metric, the higher the score the better.

BLEU =

(
N∏

n=1

pn

) 1
N

× BP

where p =
% of n-grams from hypothesis in reference

% of n-grams in reference
,

N = n-gram size of 1 to 4

and BP = min
(
1,

hypothesis length
reference length

)

WER (Word Error Rate) works on a word-level (Levenshtein) distance comparison
between words in a reference translation and a hypothesis. The score is calculated
as the minimum number of editing steps1 required to go from the reference to the
hypothesis. Essentially, any word that is not found in the same place in both sentences
adds a penalty to the overall score. While more primitive to BLEU, many translation
systems also include this score in their evaluation. For this metric, the lower the score
the better.

WER =
n. of substitutions+ n. of insertions+ n. of deletions

reference length
1By editing steps, we mean any word level transformation from the reference to the hypothesis.

For instance, if a word found in the reference is missing in the hypothesis, then that is considered
an editing step; steps include substitutions, insertions and deletion of words.

5. Evaluation 75

5.1.2 Short evaluation of previous projects

Given the very little amount of results provided by previous systems, it is extremely
hard to get an accurate idea of how each system compares with one another. None
of the rule-based systems included statistical results; nearly all the information was
in the form of “performs reasonably well” or “not quite there yet” which are highly
broad and cannot be considered as empirical comparisons. Let us quickly go through
a short review of each of the works included in the results below.

MaTrEx 1 Airport Announcement Accessibility [22]. This SMT implementation
focuses on the airport information domain, where security and general announcements
are automatically translated into ISL (Irish Sign Language). An English-ISL bilin-
gual dictionary was created from the data obtained from the ATIS (Airline Travel
Information System) dataset. In this paper they provide results for both WER and
PER (Position-Independent Error Rate). PER, in contrast to WER, also takes word
ordering into account. Their testing reports a minimum WER score of 41.68%.

MaTrEx 2 This work is developed by the same authors from the above. Here
they use a similar SMT approach but with an improved corpus and more insightful
evaluation metrics [23]. In a similar fashion to the corpus used in our evaluation,
they remove sentences that include classifiers from the overall corpus. However they
also omit all non-manual features from the evaluation, only keeping them in the
animation output. This choice fundamentally affects the accuracy results obtained
in the evaluation, and the authors note that it does not allow for a fully accurate
representation of sign language and machine translation evaluation. In addition to
WER and PER they also provide BLEU. They achieve a maximum BLEU score of
45.64% and a minimum WER score of 54.56%.

LSEMT Spanish Sign Language [28]. This system attempts translation from Span-
ish to LSE (Lengua de Signos Española) and includes both rule and statistical based
approaches with empirical results for each. Their domain is limited to Driver’s Li-
cences and ID renewals, with a corpus made of around 4000 sentences annotated in
glosses and SiGML. Here only a BLEU score is provided for each approach using
SiGML, with the best being 68.23%.

76 Translation

TSL MT Chinese to Taiwanese SL [40]. One of the few hybrid systems to include
statistical evaluation, it utilises a language specific notation to TSL in a bilingual
Chinese-TLS corpus containing around 36.000 sentences. Like the above, it provides
a BLEU score in addition to the IBM Model 3 score, a metric which is not considered
further in this evaluation being a purely SMT focussed metric. They achieve a score
of 86% for BLEU.

5.1.3 Data and Approach

This system was created using a manually expandable rule-based method since no
real BSL corpus exists to this day. All of the previous works have either created their
own corpus thanks to very patient expert translators and annotators, or used corpora
from very specific domains which would be unsuited for the purpose of this project.
However, in order to properly observe the translation accuracy it was necessary to
find data to use as reference. The website HandSpeak2 is an American Sign Language
learning resource that provides lessons as well as many example sentences. These
sentences are formed by a gloss text and an English equivalent text annotation; the
text is also accompanied by video. Because the predominant difference between ASL
and BSL are the signs themselves, and the structure of sentences stays relatively
similar, it was possible to use those sentence pairs as evaluation data. The glossing
format used on the website does not quite follow the same one used in our system.
For instance all of the sentences marked by a question do not specify exactly which
signs are signed with a “q” expression and likewise for “neg”. Some glossed sentences
also keep punctuation which is not necessary, and some of the target glosses can be

applied to more than one English version. For the example
q

you feel cold we find
two translations: “Are you cold?” and “Are you feeling cold?”.

One of the major advantages of using an online corpus through an HTML scraper is
the ability to filter unwanted or corrupted data. Some examples include mathematical
symbols such as “Is 24 ÷ 4 = 6?” which our system cannot handle. The use of
classifier predicates (see Section 2.1.2) in reference sentences also required further
manual filtering. These constructs use a very particular notation:

The cat looked at the mouse and walked away. (1)

= mouse [left] cat [right] look-at walk-away [loc]

A pen on the paper. = paper cl-paper pen cl-pen [loc] (2)

2http://www.handspeak.com

5. Evaluation 77

In example (1) the left and right notation specifies the location of the entities in the
syntactic space (see Section 2.1.3.2). In (2) the cl- means that the hand assumes
the correct handshape for that particular entity. In this case the classifier for paper
would be a B hand with the palm facing down to imitate the top of a table, and the
pen classifier would be represented by a G hand for long and thin objects. For this
reason the sentence pairs extracted from the website have also been split into those
with classifier predicates and those without as it was deemed beneficial to perform
accuracy results on respective and combined datasets.

Therefore both the source and target were formatted to comply with our evaluation
method. Manual formatting included the removal of inconsistent brackets, insertion
of dashes for fingerspelled words e.g. “Joe” = -j-o-e- and the alteration of the
Index notation from IX-me to IX_1 which is the notation employed by this system.
Moreover, to ensure that word orderings of the glosses would abide by BSL grammar
rules, reference translations in this reduced corpus were adjusted accordingly. Table
5.1 shows general information about the corpus used in our evaluation.

Dataset Stats English BSL

Basic N. of sentences 185
Avg. sentence length 6.76 4.95
N. of words 1251 916

Classifiers N. of sentences 49
Avg. sentence length 8.24 6.94
N. of words 404 340

Total N. of sentences 234
Avg. sentence length 7.07 5.36

Table 5.1: Test corpus statistical information

The following section discusses the accuracy of our system using this corpus. To
assure the reader, it is important to point out that the dataset considered for the
evaluation was never employed as a training set. In other words, the rules written
to model the transformations from English to BSL were based on the knowledge
previously acquired and not from the sentences in this corpus. After formatting the
sentence pairs obtained with the web scraper, they were kept as a “black box”, in
the sense that their grammatical structure was never analysed. Whenever a new rule
is added to files read by the translation module, the system accuracy is tested to
assess if the rule improves or worsens the overall performance. Should the accuracy
be reduced, we can use the aforementioned Smoothed BLEU [6] metric to compare

78 Accuracy Results

sentences that may have been affected. Table 5.2 shows a possible output of the
testing using the Smoothed BLEU for individual sentence pairs.

English BSL Reference BSL Hypothesis S-BLEU Score
Do you need help? (YOU NEED HELP)[q] (YOU NEED HELP)[q] 1.0
Have you got any story? (HAVE ANY STORY)[q] (YOU GET STORY ANY)[q] 0.502
I like you a lot. ME LIKE YOU LOT ME LIKE YOU LOT 1.0
How do you feel? YOU FEEL (HOW)[q] YOU FEEL (HOW)[q] 1.0
When did you move in? YOU MOVE-IN (WHEN)[q] YOU MOVE IN (WHEN)[q] 0.865
Keep in touch. CONTINUE TO-CONTACT KEEP IN TOUCH 0.217

Table 5.2: Output for pair-wise sentence evaluation

The BLEU score for the sentence “When did you move in?” can be easily improved
by adding a new word sequence move in in the SignBank set to combine them into
a single sign. On the other hand we can see from the last sentence “Keep in touch”
that the reference translation is completely different from the system output as the
concept of “maintaining communication” uses signs for concrete action of touching
to convey an abstract meaning. To achieve the correct translation, this particular
sentence would require a targeted direct translation rule.

5.2 Accuracy Results

System Approach Data/Format WER (%) BLEU (%)

LSE MT
Rule-Based SiGML n/a 64.33
Statistical SiGML n/a 68.23

TSL MT Hybrid TSL gloss n/a 86
MaTrEx 1 Statistical Gloss 41.68 n/a

MaTrEx 2 Statistical
Gloss 80.37 31.84
SiGML 54.46 45.64

This system Rule-Based
Gloss (w/o classifiers) 54.88 64.26
Gloss (only classifiers) 86.34 40.69
Combined 61.47 57.40

Table 5.3: Accuracy results for SL translation. For WER lower means better, for BLEU
higher means better. For clarity, red highlighting represent a poor score and green a
favourable score.

Table 5.3 shows this system’s accuracy compared to those described in Section 5.1.2.
The results fully confirm the claim made in Section 2.2, stating that hybrid approaches
usually deliver the highest accuracy. We can also note that the rule-based approach in

5. Evaluation 79

LSE generates a lower BLEU score than the statistical method on the same data, again
confirming what was previously expressed. Our system achieves a decent accuracy on
the dataset without classifiers but also a rather large error rate. It is therefore safe to
assume that many of the words from the reference translation actually appear in the
wrong position, or even do not appear at all, in the hypothesis. We can show this in
the following example taken from the corpus:

English I haven’t eaten yet

Reference me eat
neg

not-yet

Hypothesis me
neg

not eat yet

Yielding a Smoothed BLEU score of 76.96% and WER of 66.6%. We can visualise
the workings of WER in Figure 5.1. Following the given formula for WER we find a

value of
2

3
where the numerator is given by 1 substitution and 1 insertion, and the

denominator 3 being the length of the reference. Because we are splitting the two
sentences through single spaces, we also keep all information about the position of
non-manual features. The (not chunk in the hypothesis shows that a non-manual
feature begins at that point. Had the reference translation been not at that position,
it would have counted as incorrect; this is indeed the desired behaviour.

ME EAT (NOT-YET)[neg]

ME (NOT EAT YET)[neg]

Correct Insert ion Correct Subst itut ion

...

Figure 5.1: WER operations; green lines show correct alignments, and red lines incorrect
alignments.

Let us look at another example but with the classifiers dataset (the workings for
this example are shown in Figure. 5.2):

English The police stormed the building
Reference building cl-building police storm-in
Hypothesis police storm building

80 Survey

BUILDING POLICE

... ... POLICE

Delet ion Delet ion Correct Insert ion Subst itut ion

CL-BUILDING ... STORM-IN

STORM BUILDING

Figure 5.2: WER operations on a classifier predicate sentence

Here we obtain a Smoothed BLEU score of 42.89% and WER of 100%. The WER
numerator value 4 is given by 2 deletions, 1 substitution and 1 insertion. Since there
can be any number of insertions, the overall score may go over 1. It is then clamped
back to the max value of 1, or 100%, although it is not the case here. Note that, from
the outset, classifiers were never intended to work with the system, and by looking
at the WER score on the classifier-only dataset this becomes apparent. A 86.34%
error rate means that nearly all of the words in the reference translation differ from
the actual output hypothesis. This is understandable since the translation module is
not designed to output gloss with classifier predicates, nor is it capable of resolving
classifier predicates from an English sentence.

Even though the combined score is accounted for, it would be sensible to consider
the classifier-free subset as the most significant measure. Once again, it is crucial to
remind ourselves that these evaluation scores are highly discrepant as a result of the
greatly varying corpora employed by each approach and the divergent decisions made
by the authors to omit or incorporate non-manual features.

5.3 Survey

To collect information on the general usability of the application a survey was made
public for people to test the website. The survey covered questions on bugs, ease
of use of the website, the appeal of the avatar and understandability of the sign
animations. All questions from the survey can be found in Appendix D. There were
43 responses in total with an audience ranging from students to professionals from
different backgrounds. All responses were anonymous.

To begin with, a general question about each respondent’s fluency in BSL or
other equivalent sign language was asked. This was done to get a better insight of
how different levels of knowledge judge an online tool. The intention of this question
was to distinguish praising comments from someone with a high level of BSL, from
someone with no or little knowledge, since the opinion of a skilled user would be more

5. Evaluation 81

valuable in comparison. 36 participants had no experience in BSL whatsoever, 5 knew
a couple of signs, and 2 had enough skill to communicate with the Deaf in every day
situations (Level 1-2). Unfortunately no one had a BSL level higher than 3, however
that is why the feedback of linguists was specially sought after and their remarks
are discussed in Section 5.4. Around 75% of the participants with no experience also
expressed some sort of interest in BSL, be it just curiosity about how Deaf people
communicate or eventually wanting to learn the language.

5.3.1 Usability

Users were asked to specify the browser and device employed to access the website
in order to accurately identify bugs and browser specific issues. Figure 5.3 shows the
given responses; please note that an additional “Internet Explorer” field was available,
though it was never selected. Following that, they were asked to try the website a
try following some simple guidelines on BSL translation and a short explanation
of the interface. 11 out of the 43 participants mentioned experiencing some sort
of bugs. Most were related to the laggy animations, probably due to optimisation
issues on the users’ devices. When comparing the bugs and the devices they appear
on, no correlation was found. It is safe to assume that the bugs are not related to
implementation issues, but rather appear to be specific to the users’ browser or device
version. Some users actually misinterpreted the unknown words alert (highlighted in
red and accompanied by the shoulder shrug) as bugs. This suggests that some other
method of specifying unavailable signs might need to be considered.

82 Survey

Mac Windows Linux iPhone Android
0

2

4

6

7

1

3

7

4

5

2

3 3

1

N
um

be
r
of

U
se
rs

Safari Chrome Firefox Opera

Figure 5.3: Devices and browsers running the website

There was a strong agreement towards the understandability of the interface el-
ements though some people did not grasp the meaning of the “A” button for sug-
gestions, even though it was clearly stated in the questionnaire (Figure 5.4a). When
asked about loading times the majority rated them as “Reasonable” or “Short” (Figure
5.4b). However there were cases where loading was too long, and this might be due
to 2 particular reasons:

1. A reduced internet connection will certainly increase loading times as all the
scene variables have to be created and the model must be loaded; recall that
the avatar file exceeds 1Mb.

2. If the user was the first to access the website after an idle period, they would have
experienced longer loading times. The application is hosted on a free account of
the Heroku platform and their terms and conditions state that any free website
is given 550 hours of activity every month. All websites are managed by dynos,
and any dyno will be set to idle after 30 minutes of inactivity. Thus, if a user
accesses the website while the dyno is sleeping, their initial loading time will
be longer than usual. On the other hand all other delays should not be longer
than a couple of seconds.

5. Evaluation 83

62.8%

Agree

32.6%

Strongly agree

4.7%

Neither agree or disagree

(a) The UI elements are clear and
easy to understand

60.5%

Reasonable

23.3%

Short

4.7%

Very short

7%
Long

4.7%
Too long

(b) Loading times

Figure 5.4: Visualised data for responses on clarity of the UI and loading times (43 responses)

5.3.2 Effectiveness of the Application

Aside from the technical evaluation of the website, users were also presented with
a section investigating the avatar itself. This included questions such as “Does the
avatar come across as friendly?” and “How would you rate the movements of the
avatar?”. The vast majority of users (86%) found the virtual agent appealing and
rated its movements as quite natural; the choice was between 1 for completely un-
natural and 5 for very natural (Figure 5.5a). Interestingly, those people whom did
not like the look of the avatar also found its movements unnatural. It was shown
in [3] that “individuals are more influenced by agents who are similar to themselves
with respect to appearance-related characteristics”. This might explain why the par-
ticipants in our survey highly requested the customisation options to achieve their
preferred avatar look. Figure 5.5b shows the different elements users would like to
be able to edit, with gender being the most requested. Interestingly, for my previous
undergraduate project the use of a “male”3 virtual avatar sparked some controversy
as many did not appreciate the inability to choose a female equivalent. This partic-
ular preference is also discussed in [3], where they suggest that younger individuals,
especially students, may find female agents more “powerful role/social models”, which
explains the request for a female avatar. Surprisingly, even when presented with a
female agent, gender swap was still the most requested customisation feature.

3Quotes are used in this context because the model did not quite resemble a man, but had more
of a humanoid look. Though the overall appearance bore more resemblance to a male human and
somewhat comparable to the Ludwig model previously shown in Figure 4.9a.

84 Survey

V.
Un

nat
ura

l

Un
nat

ura
l

Ne
utr

al

Na
tur

al

V.
Na

tur
al

0

5

10

15

20

1
2

13

19

8

N
um

be
r
of

Se
le
ct
io
ns

(a) Rating of avatar movements

Ge
nd
er

Co
lou

rs

Bo
dy

fea
tur

es
0

5

10

15

20

25
23

19

4

N
um

be
r
of

Se
le
ct
io
ns

(2
9
re
sp
on

se
s)

(b) Additional customisations

Figure 5.5: Movement ratings and avatar customisation including skin and hair colour,
avatar height etc.

Participants were also given the task of setting the “Show non-manual features” in
the options and attempt to follow the animation at the same time as the notifications
(see Figure C.1 for reference). Again, the vast majority was very well able to do
so (86%), with some mentioning the speed change feature to be very useful in that
regard.

Of the two users with enough experience that completed the survey, one did not
have the possibility to try the website because of a missing graphics driver that
prevented the avatar from appearing. To the question about translation accuracy,
the other replied with “There is a fair amount of accuracy”, not being very precise.
However they did point out that the flat hand for possessive pronouns is incorrect
(ASL uses the flat hand, BSL uses a closed fist) and the fact that London should not
be fingerspelled as it has its own sign. These two observations are also discussed by
the experts in the next section4.

As was previously mentioned at the beginning of the report, the application was
built to make British Sign Language translation available online to those currently
learning that would like to practice, and for people who are simply curious about
the language. However it is not meant to be used solely as a learning tool. Users

4Please note that the two experienced users that participated to the survey may not necessarily
be Rachel and Adam, the two consulted linguists.

5. Evaluation 85

were asked if they would recommend the website to someone curious about BSL
and to someone learning it, with most people praising the idea of such a tool. To
be exact, 90% would recommend it to someone curious about BSL, while 81% would
recommend it to someone learning the language. This slight division of opinion might
be a result of potential incorrect translations: it would not be wise to use an inaccurate
teaching tool, however the occasional mistake can be overlooked if individuals solely
use it to get an idea of the language. Looking at the comments linked with the same
question, some specifically commended the ease of use and simplicity of the website.
The ability to change point of view (from 3rd to 1st person) was well received. Others
also liked the fact that the translation is explained, mainly in the additional info, but
also thanks to the non-manual features notifications. The experienced user pointed
out the range of situations where this tool could come useful

“I would recommend this mainly because I think it may have more po-
tential than is first thought. I can think of different applications going
forward in the field of deaf education but also for people who are fluent
in BSL but who find written text difficult to understand. Of course there
would need to be a lot more words etc inputted for this latter use. Then
there is also the interest factor. The syntactic changes between English
and BSL are interesting and well demonstrated here. It could form one
useful way of practising the language if enough words were inputted. The
learner could see the sentence first, try to practise it in BSL and then see
the Avatar do it as a means of checking progress.”

Nonetheless, there were also some negative comments, mainly linked to the lack
of vocabulary. This is understandable, as there are many important signs describing
emotions and basic actions such as “drinking” which are not available. Most signs are
simply missing because of time limitations, as each sign animation takes around 5-15
minutes to create depending on the complexity of the hand gestures. On the other
hand, many verbs cannot be added yet because they require syntactic agreement with
the object. As was shortly described in Section 2.1.1, a verb sign may be modified by
the object it describes. For instance the action of drinking wine is signed differently
from the one drinking coffee because the information about what is being consumed
is incorporated directly into the handshape of the verb. Thus, it would be wrong to
add a sign for “drinking” since there is no universal sign for that action: it requires a
noun modifier.

86 Feedback from BSL Linguists

Less significant criticism was aimed at the interface. Some users did not particu-
larly understand the placement of the “Translate” button on the far right, and would
have instead preferred it near the input box. In addition, the “A” button for sugges-
tions was not clear enough and as a result people tried to insert sentences that did
not quite work; particularly, names were entered without being capitalised, leading
to the system not recognising them as such and thus were not fingerspelled.

Despite the complaints, the application was overall well received by the general
public and notably endorsed for its simplicity and innovative application of BSL
translation over the browser, making it easily accessible to anyone on a multitude of
devices without the need to install it. While there are some changes that could be
made to improve its usability, the lack of signs does impose a problem as not many
BSL sentences can be generated presently.

5.4 Feedback from BSL Linguists

During the time the survey was available, I got in touch with Rachel Sutton-Spence,
author of the book employed to learn the linguistics of BSL. Adam Schembri, lecturer
in Sociolinguistics at the University of Birmingham was also approached. The website
and survey were made available to them to have a first-hand experience and to provide
general thoughts about the translation and avatar signer.

Similarly to the general opinion of the public, the aesthetics of the website were
well received, although Rachel expressed that the idea of a virtual signing avatar
required some getting used to. This isn’t surprising as, in fact, virtual agents used
in teaching or training environments are still not universally accepted as comparable
to humans [18]. However one of the main advantages of using a virtual agent is the
ability to make it infinitely repeat an exercise or action for the benefit of the user. It
is important to understand that depending on the implementation of the avatar and
the techniques employed to animate it, a potential lack of realism and restriction on
the type of interactions can lead to a degraded user experience. Manually animating
humanoid figures requires skills and is often time consuming. That is why many
prefer to use motion capture instead; this approach is discussed in more detail in the
future work Section 6.3. Adam on the other hand, specifically mentioned that the
avatar was understandable and that the animations were very clear.

The rest of the comments were targeted at the translations. Firstly, because the
system uses a generic rule for fingerspelling, any proper noun is automatically finger-
spelled regardless of the type (person, place, brand etc.). For this reason any sentence

5. Evaluation 87

that includes a city or country name would actually show that particular word as be-
ing fingerspelled, such as Italy = -i-t-a-l-y-. From the email correspondence with
Rachel she expressed the following concern

“A blanket rule that all Proper nouns are fingerspelled is not really reli-
able, though, because there are many proper nouns that do have signs,
especially place names. An automated translation system that doesn’t
know signs for major place names (e.g. common European countries, or
major UK cities) would be odd.”

WordNet synsets include multiple subcategories for nouns such as noun.animal.
noun.person, noun.plant and many more, including noun.location. With a sim-
ple modification to the Word object class it would be possible to perform a boolean
check for place names. Naturally, place names would have to be animated as well
to be displayed. An additional resource could also come useful since there are some
exceptions, such as Essex which is indeed fingerspelled.

Secondly, an issue solely related to the sign representation and that was previously
spotted by a participant in the survey, was the incorrect handshape for possessive
pronouns such as yours or his/hers. The BSL handshape for personal pronouns is
a pointed closed fist, however the current animation displays a flat hand, used in
ASL. This was ultimately a personal mistake and through more judicious analysis
it could have easily been avoided. Nevertheless, since it is only an issue linked to a
sign’s representation it can easily be mended by changing the animations for those
pronouns that use the POSS sign.

Another issue pinpointed by Rachel had to do with numbers and quantifier signs.
For example, any sign modified by a number such as “three pounds” where pounds is
the currency £, should be combined with the number itself to form £-3. Similarly,
when describing the age of a person we should expect age-22. Currently, our system
displays age 22 and pound 33, meaning each sign is performed individually. Un-
fortunately this problem falls within the same category as classifiers and agreement
verbs, where the sign animations must be combined in more complex manners than
just playing them concurrently. Since it is not possible, and would be foolish, to
animate all sign combinations, the system requires additional work to merge complex
sign modifiers such as £ and age with quantifiers and number signs.

Moreover, some signs that utilise the data from SignBank are found to be mishan-
dled. As mentioned by Adam, the sentence “How are you?” should result in a single

sign
q

how-are-you. However because the SignBank step is performed after the tree

88 Feedback from BSL Linguists

transformations, some rules may apply to the sentence structure and move words to
a position where the SignBank composed words do not match any more. Specifically,

“How are you?” currently yields the BSL translation you
q

how. The rule that applies
here is one covering Wh-adverb phrases, where any question starting with a wh- word
pushes the word at the end of the sentence and marks it with a question tag. While
this rule correctly applies to most cases, with how-are-you the SignBank lookup
would have to be performed before the tree transformations. Another cause of this
inaccurate behaviour is the use of the root replacing the word value i.e. if “How are
you” is the source text in the SignBank data, but the root values of each of those
words corresponds to “How is you”, obviously the match will not happen. But as a
result of the flexibility and modularity of the system, this can be corrected easily by
moving the SignBank step before the tree transformations, although it would require
the system to correctly assign the new single tag to each new aggregated word. Figure
5.6 schematises this problem: since 3 words with different POS tags are combined
into one, which POS tag should be assigned to the new word?

ROOT

SBARQ

SQ

NP

PRP

you

VBP

are

WHADVP

WRB

How

→

ROOT

SBARQ

SQ

NP

PRP

VBP

WHADVP

?

how-are-you

Figure 5.6: Issue with using SignBank before tree transformations

Finally, Adam mentioned the incorrect sign placement of locations in rhetorical
sentence constructs such as

I lived in Italy = me live
q

where italy (1)

I arrived in London yesterday = yesterday me arrive
q

where london (2)

where the supposedly correct translation should be me live italy for the example

(1). In contrast, Rachel argued that the translation with the
q

where pattern (the
current system behaviour) is indeed correct. It can be assumed that this is because
of the differing modes of use of such sentence constructs between BSL signers.

5. Evaluation 89

Overall, the two linguists consulted believe the application is an interesting ap-
proach to the translation and transmission of BSL through a virtual agent, though
it does not properly represent how some Deaf people sign. This is something that
can be improved with the inclusion of more rules and further fine-grained analysis
to cover specific cases such as the aforementioned fingerspelling for place names. In
addition, more work needs to be done to handle classifier predicates and agreement
verbs, though the potential approach for this is reviewed in the following chapter.

5.5 Summary

Through an empirical evaluation we compared this system’s translation accuracy to
that of previous implementations, attentively discussing differences in approaches,
preferred metrics and selected corpora. Because no accurate scheme to assess the
correctness of animations exists, more subjective evaluations were also employed. The
survey feedback was highly assistive in discovering flaws in the user interaction and
web interface in addition to understanding missing features or incorrect behaviour of
the system. The device/browser specific question gave a good insight in the type of
technology people used to access the tool and results demonstrated its high portability
and stable performance. The general feedback also helped to get an idea of the
naturalness and intelligibility of animations. The more targeted expert feedback
disclosed some overlooked imperfections, such as the incorrect use of the possessive
signs and fingerspelling for place names. Some of the suggested improvements can
be easily achieved since they require only a few modifications to the overall system.
However building a large library of signs will take time and additional changes to
accommodate more complex sentences as remarked by the linguists will have to be
carefully designed and implemented in the future.

90

Chapter 6

Conclusion

6.1 Discussion

The work described in this report explored the development of a portable web based
translation system from written English to British Sign Language. We presented ex-
isting techniques in well established topics such as machine translation, 3D animation
and modern web programming and attempted to combine them into an innovative
approach to sign language translation. We presented an overview of BSL to give an
idea of the differences between written and signed English, as well as to support the
decisions made when designing the system. A rule-based method allows us to create
grammatical transformations to achieve translation between English and BSL, and
while more advanced methods exist such as statistical and hybrid approaches, the
final implementation demonstrates potential in solving the interlingual problem of
translation. With 3D animation techniques a virtual agent displays the animations of
the resulting sign language translation in real time. The available media commands
to interact with the avatar make it easy to repeat and carefully understand signs, and
the additional settings can be used to adjust the playback to the individual’s needs.
The resulting system was thus developed successfully, incorporating all the necessary
features listed in Section 1.2. Through an empirical evaluation we assessed the perfor-
mance of the translation in terms of accuracy, and with the help of both experts and
untrained individuals we asserted the correctness of signing from the virtual avatar
and the general usability of the website. While there is vast room for improvement
and potential expansion, the system is highly regarded as innovative and useful, es-
pecially because of its ease of use and attractiveness which could intrigue individuals
into learning more about BSL and therefore increase their understanding of the Deaf
community. Being a web application, the information generated is available on any
modern device and browser, making it remarkably easy to access and applicable to a

91

92 Difficulties and Achievements

multitude of situations, including learning and instant translations. The adoption of a
user-accessible file management approach makes the system highly extensible. Trans-
lation rules can be adjusted to improve the translation while sign animations can
continuously be added to expand the available library of signs, without the necessity
to modify any of the code.

6.2 Difficulties and Achievements

Some obstacles were encountered throughout the duration of this work, ranging from
design decisions of the core system, to technical difficulties with the adopted tech-
nologies. These challenges forced me to think differently to what I first expected,
and I believe the work produced for this thesis would never have been possible had I
not planned in advance exactly what needed to be achieved. One of the most chal-
lenging aspects was the extensive reading of BSL linguistics, a crucial step required
to correctly develop grammar rules. Had the approach been statistical rather than
rule-based, it would still have been necessary to understand the underlying mechanics
of sign languages, especially since it would have involved the construction of a large
corpus as was done in other works. In retrospect, a statistical or hybrid approach
would have probably led to better accuracy and covered more possible translations,
however would have required much more preparation, potentially undermining the
completion of the equally important animation module. Periodically testing methods
and ideas in small scale before implementing them in the final product prevented
mistakes that could have caused unexpected outcomes. Namely, the use of the JSON
format instead of Collada led to smoother animations without the need to build an
interpolation engine from scratch. Had Collada not been tested with ThreeJS be-
forehand, more time would have been consumed modifying the code to migrate to
JSON.

The skills learnt in the Computer Animation and Computational Linguistics courses
were an immense asset that gave me a useful insight when designing the system. This
was also my first large scale programming project using Python, something I had only
used minimally in the past. It was also my first web application using JavaScript and
Flask. It is satisfying to observe the different modules functioning smoothly after com-
pletion, especially considering the high complexity of such a system. The extensive
knowledge gained by working on this project made me even more interested in web
development and I hope to create other equivalently complex and useful applications
in the future, as well as continuing to improve this one.

6. Conclusion 93

6.3 Future Work

The project completed for this thesis lays the foundations for possible future work
to either improve the current implementation or build upon it to extend it with
additional features.

6.3.1 Improvements

As was mentioned in the previous section, there is definitely room for improvement.
On the linguistics side, many rules are still required to get higher accuracy and cover
more sentence constructs. Luckily, the current approach is highly extensible thanks
to the standardised annotation format, meaning that rules can be added by simply
editing the rule files without needing to modify any code. Additional sign animations
to display more gestures can also be added independently.

Currently, the Special Cases module still utilises hardcoded rules. To further
improve the flexibility of the system, a handwritten rule approach could also be cre-
ated for it so that procedures that do not fall within the tree transformations or direct
translation can be added gradually. Furthermore, many features of BSL still remain
untouched. For example agreement verbs are not handled by the translation nor
the animation modules. One way of solving this would be using a 3D representation
of subject and object whenever an agreement verb is identified, similarly to what was
done by Huenerfauth’s work on classifier predicates [14]. For instance the sentence “I
asked you a question” translates to me-ask-you question, where me and you are
incorporated in the sign. To achieve this, one could create a basic shape for the ask

sign and after determining the entities involved, the direction of the arm would follow
that of the subjects. In this example the hand would assume the shape of the verb
“ask” and move from the signer me to the position of the partner you. Naturally
things become more complicated when covering classifier predicates. Following
Huenerfauth’s approach, any entity that is associated with a specific group (see Sec-
tion 2.1.1 for details on classifiers) can be processed separately from the rest of the
signs. As was shown in Figure 5.2, any object involved in a classifier predicate must
be represented with a handshape. In this example, the “building” entity is signed with
the building sign and referred to with the (cl-building) classifier, which is then
utilised as default instead of the actual sign for the building entity. Of course, this
would involve the development of an entirely separate module to cover these particu-
lar constructs, though its inclusion would certainly increase the translation accuracy
and variety of sentences the system can handle.

94 Future Work

On the other hand, the system could be redesigned with a hybrid approach in
mind, using statistical techniques to infer tree transformation and direct translation
rules. As a fun but not necessarily significant interaction improvement, a speech
recognition module (perhaps using Google’s Cloud Speech API1) could be set at the
beginning of the pipeline to recognise spoken text and automatically translate any
recognised sentence. This would be more of an additional feature that users can enable
or disable in the settings. Another possible enhancement could be the inclusion of
a “storyboard”-style visual feedback of the resulting translation, where each sign, in
addition to being displayed as gloss and animation, is also given as an image depicting
the sign in the way it is usually shown in sign language textbooks. It would consist
of a still image of the avatar with arrows showing the movements of the hands and
face. This could be deemed beneficial as some people may be used to this kind of sign
visualisation, and its inclusion would reinforce their understanding of the translation.
Being a static representation, it can be “read” at the user’s own pace rather than at
a fixed playback speed. This conceptual visualisation is shown in Figure 6.1a and
compared to a sign illustration from british-sign.co.uk2 in Figure 6.1b.

(a) (b)

Figure 6.1: Static illustrations of the sign animal

6.3.2 Extensions

Given the number of subfields of Computer Science touched by this work, there are
quite a few ideas that come to mind for potential related future projects. Some of

1https://cloud.google.com/speech/
2http://www.british-sign.co.uk/british-sign-language/dictionary/

6. Conclusion 95

these include:

• The creation of a motion capture to JSON file system. Essentially, one could ex-
ploit modern animation techniques for recording body and facial movements to
generate sign animations. This method was already employed with ViSiCAST
[21]. Because motion capture often records movement for all visible joints,
the main challenge in this project would be the separation between bones that
should be considered essential to the sign and those that can be discarded to
prevent the incorrect weight distribution with playback of simultaneous anima-
tions. The output from this system could then be directly used in our web
application.

• A project aimed more towards image processing would involve the automated
generation of animation data from pre-synthesised video. An ambitious, yet
very interesting concept, it could automatically collect online data from videos
of signers (these can be found on websites such as SignBank, SignBSL.com and
YouTube) to quickly build a virtual dictionary of signs that can be used in our
system.

• Finally, the web application itself could eventually be made into a browser
add-on. In the introduction of this report, it was stated that reading text is
comparatively more challenging for Deaf than for hearing individuals. Hence,
given some text on a random website, one could open the add-on and with a
window-in-window technique, the translating avatar would appear as a preview
and translate the text being displayed to assist native BSL signers. A rendered
conceptual visualisation of this idea is shown in Figure 6.2.

Figure 6.2: Possible browser add-on for the current system. The current sentence is high-
lighted in yellow and the words being signed (approximated) are coloured in pink.

96

References

[1] Action on Hearing Loss. Deafness, 2016. [Online and accessed 14-February-
2016]. URL: http://www.actiononhearingloss.org.uk/your-hearing/

about-deafness-and-hearing-loss/deafness/myths-about-deafness.aspx.

[2] Action on Hearing Loss. Statistics, 2016. [Online and accessed 20-
April-2016]. URL: https://www.actiononhearingloss.org.uk/your-hearing/
about-deafness-and-hearing-loss/statistics.aspx.

[3] Amy L Baylor. Promoting motivation with virtual agents and avatars: role of
visual presence and appearance. Philosophical Transactions of the Royal Society
of London B: Biological Sciences, 364(1535):3559–3565, 2009.

[4] Mehrez Boulares and Mohamed Jemni. Mobile sign language translation sys-
tem for deaf community. Technical report, Research Laboratory of Technologies
of Information and Communication Electrical Engineering, University of Tunis,
2012.

[5] Michael Carl. Inducing translation templates for example-based machine trans-
lation. Technical report, Institut för Angewandte Informationsforschung, 1999.

[6] Boxing Chen and Colin Cherry. A systematic comparison of smoothing tech-
niques for sentence-level BLEU. ACL 2014, page 362, 2014.

[7] Hinrich Schütze Christopher D. Manning, Prabhakar Raghavan. Introduction to
Information Retrieval, chapter Boolean Retrieval. Cambridge University Press,
2008.

[8] DCAL. Is sign language the same the world over?, 2016. [Online and ac-
cessed 14-August-2016]. URL: http://www.ucl.ac.uk/dcal/faqs/questions/
bsl/question6.

97

[9] Marie-Catherine de Marneffe and Christopher D. Manning. Stanford typed de-
pendencies manual, 2008. Revised for the Stanford Parser v.3.5.2 in April 2015.

[10] Wanessa Machado do Amaral, Jose Mario De Martino, and Leandro Mar-
tin Guertzenstein Angare. Sign language 3D virtual agent. Technical report,
Department of Computer Engineering and Industrial Automation, FEEC, Uni-
versity of Campinas, 2010.

[11] Michel Galley, Mark Hopkins, Kevin Knight, and Daniel Marcu. What’s in a
translation rule? Technical report, Computer Science Department,Columbia
University, 2004.

[12] Thomas Hanke. HamNoSys - representing sign language data in language re-
sources and language processing contexts. In Representation and processing of
sign languages, pages 1–6, 2004.

[13] Matt Huenerfauth. A multi-path architecture for machine translation of English
text into American Sign Language animation. In Proceedings of the Student
Research Workshop at HLT-NAACL, pages 25–30, 2004.

[14] Matt Huenerfauth. Generating American Sign Language Classifier Predicates for
English-to-ASL Machine Translation. PhD thesis, University of Pennsylvania,
2006.

[15] IBM. Say it Sign it, 2007. [Online and accessed 14-February-2016]. URL:
https://www-03.ibm.com/press/us/en/pressrelease/22316.wss.

[16] Jim G. Kyle and Bencie Woll. Sign Language: The Study of Deaf People and
Their Language. Cambridge University Press, Cambridge, UK, 1985.

[17] Sue Lewis. Supporting reading within an auditory oral approach. In International
Conference on Deaf Education. University of Edimburgh, 1997.

[18] Michael W Link, Polly P Armsby, Robert C Hubal, and Curry I Guinn. Ac-
cessibility and acceptance of responsive virtual human technology as a survey
interviewer training tool. Computers in Human Behavior, 22(3):412–426, 2006.

[19] Ariadna Font Llitjoós, Jaime G Carbonell, and Alon Lavie. A framework for
interactive and automatic refinement of transfer-based machine translation. In
Proceedings of the Tenth Workshop of the European Association for Machine
Translation. Language Technologies Institute, Carnegie Mellon University, 2005.

98

[20] Ian Marshall and Eva Safar. Sign language translation via DRT and HPSG. In
Third International Conference, CICLing, pages 58–68, 2002.

[21] Ian Marshall and Eva Safar. A prototype text to British Sign Language (BSL)
translation system. Technical report, School of Information Systems, University
of East Anglia, 2003.

[22] Sara Morrissey and Andy Way. Joining hands: Developing a sign language
machine translation system with and for the deaf community. National Centre
for Language Technology, 2007.

[23] Sara Morrissey and Andy Way. Manual labour: tackling machine translation for
sign languages. In Machine Translation, volume 27, pages 25–64. Springer, 2013.

[24] Achraf Othman and Mohamed Jemni. Statistical sign language machine trans-
lation: from English written text to American Sign Language gloss. In IJCSI
International Journal of Computer Science Issues, pages 65–73, 2011.

[25] Kishore Papineni, Roukos Salim, Todd Ward, and Wei-Jing Zhu. BLEU: a
method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting on association for computational linguistics, pages 311–318.
Association for Computational Linguistics, 2002.

[26] Hrvoje Peradin and Francis Tyers. A rule-based machine translation system
from Serbo-Croatian to Macedonian. Technical report, University of Zagreb and
Universitat d’Alacant, 2012.

[27] Chandler Prall. requestAnimationFrame is not your logic’s friend, 2016. [Onilne
and Accessed on 11-August-2016]. URL: http://www.chandlerprall.com/2012/
06/requestanimationframe-is-not-your-logics-friend/.

[28] Rubén San-Segundo, Verónica López, Raquel Martín, David Sánchez, and Adolfo
García. Language resources for Spanish - Spanish Sign Language (LSE) transla-
tion. In Proceedings of the 4th workshop on the representation and processing of
sign languages, pages 208–211. LREC, 2010.

[29] V. M. Sanchez-Cartagena, F. Sanchez-Martinez, and J. A. Perez-Ortiz. An open-
source toolkit for integrating shallow-transfer rules into phrase- based statistical
machine translation. Technical report, Universitat d’Alacant, 2012.

99

[30] Felipe Sanchez-Martinez and Mikel L. Forcada. Inferring shallow-transfer ma-
chine translation rules from small parallel corpora. In Journal of Artificial In-
telligence Research 34, pages 605–635, 2009.

[31] Satoshi Shirai, Francis Bond, and Yamato Takahashi. A hybrid rule and example-
based method for machine translation. In Natural Language Processing Pacific
Rim Symposium, pages 49–54, 1997.

[32] Sign BSL. BSL sign language dictionary, 2016. [Online and accessed 30-July-
2016]. URL: http://www.signbsl.com.

[33] Signature. British Sign Language, 2016. [Online and accessed 30-July-2016].
URL: http://www.signature.org.uk/british-sign-language.

[34] William Stokoe. The sign structure: an outline communication systems of the
American Deaf. Technical report, University of Buffalo, 1960.

[35] Stuart M. Thiessen. A grammar of SignWriting. Master’s thesis, University of
North Dakota, Grand Forks, North Dakota, 2011.

[36] Yuan Tian and David Lo. A comparative study on the effectiveness of part-
of-speech tagging techniques on bug reports. In 2015 IEEE 22nd International
Conference on Software Analysis, Evolution, and Reengineering (SANER), pages
570–574. IEEE, 2015.

[37] UCL. BSL sign bank, 2016. [Online and accessed 30-July-2016]. URL: http:
//bslsignbank.ucl.ac.uk/.

[38] Tony Veale and Alan Conway. Crosss modal comprehension in ZARDOZ, an
English to sign-language translation system. In 7th International Generation
Workshop, pages 249–252, 1994.

[39] Tony Veale, Alan Conway, and Brona Collins. The challenges of cross-modal
translation: English to sign language translation in the ZARDOZ system. In
Machine Translation, volume 13, pages 81–106. Kluwer Academic Publishers,
1998.

[40] Chung-Hsien Wu, Hung-Yu Su, Yu-Hsien Chiu, and Chia-Hung Lin. Transfer-
based statistical translation of Taiwanese Sign Language using PCFG. 6(1),
2007.

100

[41] Liwei Zhao, Karin Kipper, William Schuler, Christian Vogler, and Martha
Palmer. A machine translation system from English to American Sign Language.
Technical report, University of Pennsylvania, 2000.

101

102

Background Reading

Deaf Solutions 3. BSL 320. Linguistics Exam. Jan 2016.

CG Cookie. Blender: Introduction to Character Rigging, 2016. [Online; accessed
20-April-2016]. URL: https://vimeo.com/33551536.

Daniel Jurafsky and James H. Martin. Speech and Language Processing. Pearson
Education Ltd, Essex, UK, 2014.

Tony Parisi. Programming 3D Applications with HTML5 and WebGL, 2014.

Signature. Teacher Notes: Level 3 Certificate in British/Irish Sign language. Sept
2013 - Aug 2014.

Rachel Sutton-Spence and Bencie Woll. The Linguistics of British Sign Language:
An Introduction. Cambridge University Press, Cambridge, UK, 1999.

103

104

Appendix A

Translation rules

Tree transformations

1 NP -> PDT <> | NP -> _ <>
2 // very specific case
3 NP -> <> JJ NN∼ CC <> NN∼ | NP -> NN∼ <> JJ CC NN∼ <>
4 NP -> <> JJ JJ NN∼ | NP -> <> NN∼ JJ JJ
5 NP -> DT <> NN∼ | NP -> NN∼ DT <>
6 NP -> JJ NN∼ | NP -> NN∼ JJ
7

8 NP -> DT RB JJ NN∼ | NP -> NN∼ DT RB JJ
9 NP -> RB JJ NN∼ | NP -> NN∼ RB JJ

10 NP -> <> JJ NN∼ | NP -> <> NN∼ JJ
11 NP -> <> ADJP NN∼ | NP -> <> NN∼ ADJP
12

13 // will cover anything like "has died", "was born" i.e. auxiliaries
14 VP -> VB∼ <> VP | VP -> _ <> VP
15 // covers "He was sick", "He is tall" etc
16 VP -> VB∼ ADJP <> | VP -> _ ADJP <>
17 VP -> TO <> | VP -> _ <>
18

19 PP -> TO NP NP | PP -> _ NP NP
20 PP -> TO NP | PP -> _ NP
21

22 S -> NP ADVP VP | S -> NP VP ADVP
23

24 SQ -> VB∼ <> | SQ -> _ <> // removes the "have", "did" etc in questions
25 SQ -> MD <> | SQ -> _ <>
26

27 // handles direct questions introduced by a wh- word or wh-phrase
28 SBARQ -> WH∼ <> | SBARQ -> <> WH∼
29

30 SINV -> MD <> | SINV -> _ <>
31

32 WHNP -> WDT NN∼ | WHNP -> NN∼ WDT // handles "which book ..."
33 WHNP -> WHNP <> | WHNP -> <> WHNP

Listing A.1: tree_transforms.txt

105

Direct translation

1 SWAP
2 if -> if // moves the sentence after the if before the cause
3 WORDS
4 there be -> _ _ // removes the existential there + is
5 if it -> _ _ // removes the it in SBAR
6 have you -> _ you // remove any ’have you ’ questions
7 time last -> past time
8 year old -> _ age
9 time what -> what time

10 happy year new -> happy new year
11 year next -> next -year _
12 week next -> next -week _
13 day next -> next -day _
14 year last -> last -year _
15 week last -> last -week _
16 as much as -> same _ _
17 DT
18 a->_
19 an->_
20 some->_
21 this->ix
22 those->ix
23 that->ix
24 these->ix
25 the->_
26 PRP
27 i->me
28 he->ix
29 him->ix
30 she->ix
31 her->ix
32 it->_
33 us->we
34 they->them
35 POS
36 ’s->_
37 ’->_
38 IN
39 if->_
40 because->why
41 as->_
42 MD
43 will->_
44 NNS
45 parent->-m-f-
46 NN
47 mom->-m-m-
48 mum->-m-m-
49 mother->-m-m-
50 dad->-d-d-
51 father->-d-d-
52 CC

106

53 and->_ // remove and conjunction
54 ->dollar
55 RB
56 o’clock->time
57 VB
58 be->_
59 VBD
60 be->_
61 VBZ
62 be->_
63 VBG
64 be->_
65 VBP
66 be->_

Listing A.2: direct_translation.txt

SignBank multi-words

1 about time
2 above all
3 add up
4 adhesive tape
5 adultery adulterous
6 air force
7 alarm bell
8 alcoholic drink
9 all day

10 // ... 680 more lines
11 will do
12 wind someone up
13 wipe out
14 work hard
15 work out
16 world record
17 worn out
18 would not
19 year before

Listing A.3: signbank_multi.txt

107

108

Appendix B

Additional algorithms and Code

B.1 Data Extraction from the Stanford Parser

Upon launching the web-app, a Parser object is created in Python and depending on
the availability of the online interface of the Stanford Parser, the object will either
act as an HTML scraper on the interface’s source, or create a local version of the
parser (Listing B.1).

1 from nltk.parse.stanford import StanfordParser , StanfordDependencyParser
2

3 class Parser:
4 def __init__(self , app=False):
5 # first check accessibility of stanford website
6 status_code = 0
7 try:
8 initRequest = requests.post(
9 "http ://nlp.stanford.edu :8080/ parser/index.jsp",timeout =5)

10 # test that the parser still available
11 status_code = initRequest.status_code
12

13 except requests.ConnectionError:
14 print "Not online , using offline parser"
15 except requests.exceptions.Timeout:
16 print "Response too slow , using offline parser"
17

18 if (status_code == 200): # online
19 self.online = True
20 else:
21 self.online = False
22

23 # setup necessary variables to create local stanford parser
24 os.environ[’STANFORD_PARSER ’] = APP_PARSER
25 ...
26 # setup tree parser
27 self.parser = StanfordParser ()
28 # setup dependency parser
29 self.dependency_parser = StanfordDependencyParser ()

109

Listing B.1: Parser object creation from the Stanford implementation

Because each version yields the same data but in a different format, the parse method
executes the correct code for each situation. As can be seen on line 7 in Listing B.3,
when the Stanford Parser is online we use the BeautifulSoup library to scrape the
HTML page where the result of the request is displayed. From there we obtain the
3 essential objects: the tagged sentence (line 10), the parse tree (line 12) and the
dependencies (line 14). On the other hand, if we are using a local version then the
methods differ as the parser will return objects instead of raw text. These objects
have to comply to the same format, thus they are altered accordingly.

1 def parse(self , sentence):
2 if(self.online):
3 r =requests.post("http ://nlp.stanford.edu :8080/ parser/index.jsp",
4 data={’parse’: ’Parse’,
5 ’parserSelect ’: ’English ’,
6 ’query’: sentence })
7 soup = BeautifulSoup(r.text , "html.parser")
8 tagging = ’ ’.join(soup.find("div",
9 {"class": "parserOutputMonospace"}).text.split())

10 parseTree = ’ ’.join(soup.find_all("pre",
11 {"class": "spacingFree"})[0]. text.split())
12 parseTree = nltk.Tree.fromstring(parseTree)
13

14 dependencies = soup.find_all("pre",
15 {"class": "spacingFree"})[1]. text.split(’\n’)
16 return [tagging , parseTree , dependencies] # complete result
17 else:
18 parseTree = list(self.parser.raw_parse(sentence))[0]
19

20 dependencies_res = self.dependency_parser.raw_parse(sentence)
21 dependencies_res = dependencies_res.next()
22 dependencies = list(triples_alt(dependencies_res))
23

24 leaves = list(parseTree.subtrees(lambda t: t.height () == 2))
25 tagging = ’’
26 for pair in leaves:
27 # remove brackets then split tag/word
28 txt = str(pair).strip("()").split()
29 tagging += txt [1]+’/’+txt[0] + ’ ’
30 tagging = tagging [:-1]
31 return [tagging , parseTree , dependencies]

Listing B.2: Obtaining the data from the remote or local parser

110

B.2 HTML scraper for the SignBank data retrieval

1 url = ’http :// bslsignbank.ucl.ac.uk/dictionary/search /?’
2 query = ’query=’
3 page = ’&page=’
4 file = open(’signbank_multi.txt’, ’w’)
5 for letter in ascii_uppercase:
6 index = 1
7 prevWords = ’’
8 while(True): # until we haven’t found all the words for this letter
9 html = requests.get(url+query+letter+page+str(index))

10

11 soup = BeautifulSoup(html.text , "html.parser")
12 table = soup.find(’div’, {’id’:’searchresults ’})
13

14 soup = BeautifulSoup(table.text , ’html.parser ’)
15 words = filter(lambda x: len(x) > 0,soup.get_text ().split(’\n’))
16

17 if words == prevWords:
18 break
19 print words
20 prevWords = words
21

22 for w in words:
23 # we only save those words that make up 1 sign
24 if len(w.split(’ ’)) > 1:
25 file.write(w+’\n’)
26 index += 1
27 file.close()

Listing B.3: Python code for parsing the SignBank website

111

B.3 Main animation sequence loop

Algorithm B.1 Clips animation sequence
Require: fade_counter is a variable to access individual clip objects in the clip list
Require: mixer is an object that directly modifies the clips for fading, playing etc.
Require: URL.manual contains the data to load clips (index, name, path)
1:
2: function playSequence
3: clip ← clips[fade_counter]
4: if first_step is true then
5: mixer.Set(clip) . Loop, reset and play clip
6: modifierLoop(fade_counter)
7: fade to next clip
8:
9: fade_counter ← fade_counter + 1
10: first_step ← false
11: continuous_step ← true
12:
13: if continuous_step is true then
14: if URL.manual length > 1 then
15: if clip.time > clip.duration then
16: pause clip
17:
18: if clip.name = next clip.name then
19: change next clip.name
20: mixer.Set(clip)
21: modifierLoop
22: checkCompounds
23: fade to next clip
24:
25: if fade_counter = URL.manual length then . Sequence end
26: continuous_step ← false
27: final_step ← true
28: fade_counter ← fade_counter + 1
29: else
30: continuous_step ← false
31: final_step ← true
32: if final_step is true then
33: if clip.time > clip.duration then
34: pause clip
35: mixer.Reset
36: fade to init clips . Idle clip
37:
38: reset HTML gloss
39: final_step ← false

112

Appendix C

Screenshots and Project Structure

Figure C.1: “Show non-manual features” enabled playback

113

Figure C.2: First person view of the avatar when fingerspelling the letter “J”

Figure C.3: 3rd person view at the same time as what is displayed in Figure C.2

114

BSL

app.py

static

lib

js

nltk-data

stanford-parser

py

analyser.py

bleu.py

parser.py

rules.py

sentence.py

test.py

utils.py

unit-test

classifier-test-set.txt

test-set.txt

train-set.txt

res

animations

alphabet

init

blinking.js

idle.js

unknown_0.js

non-manual

future.js

hn.js

neg.js

past.js

q.js

numbers

words

a

age.js

verbs

arrive.js

. . .

z

css

fonts

model

rules

threejs

templates

index.html

venv

Figure C.4: File structure of the project; files are highlighted in blue

115

116

Appendix D

Survey Questions

1. What is your level of knowledge of sign language (BSL, ASL or equiv-
alent)? Choose one.

© No experience at all

© Limited knowledge (Know a few signs and/or the alphabet)

© Level 1-2 (Enough skills to communicate with Deaf people in a range of
everyday situations)

© Level 3-4 (Enough skill to interact on a regular basis with Deaf people in
a work environment)

© Level 6 (Enough skill to work professionally with Deaf people e.g. teachers
in BSL, translators etc.)

If you answered No experience, have you ever been curious about
BSL or Sign languages in general?

© Yes

© No

At this point the users are directed to the website translate.nicmosc.com where
the application is hosted. They are given some guidelines on what is available
and a short introduction to the application in general.

2. Did you notice any bugs? If no skip this question. Otherwise choose
any of the following.

� Website did not load

117

� The spinning wheel does not stop and no animation is shown

� The animations are laggy (frames per seconds are low)

� The website crashed

� Other: .

3. Please specify the device and browser you are currently using. If you
found bugs and switched browsers/device, select the former. Please
click only 1 of the following.

Safari Chrome Firefox Opera Internet Explorer

Mac computer © © © © ©

Windows computer © © © © ©

Linux computer © © © © ©

iPhone © © © © ©

Android phone © © © © ©

4. The interface buttons are clear and it is easy to understand what they
do. To what extent do you agree with this statement?

© Strongly agree

© Agree

© Neither agree or disagree

© Disagree

© Strongly disagree

5. Does the avatar come across as friendly?

© Yes

© No

© Kind of

6. If you answered “No” or “Kind of” above, why do you think so?

. .

7. How would you rate the movements of the avatar?

118

1 2 3 4 5
Very unnatural © © © © © Very natural

8. Do you think the avatar should be customisable? If so select which
options you would like to see. Otherwise skip this question.

� Gender

� Colours (skin, clothes, hair etc.)

� Body features (height, weight, arms length etc.)

� Other .

9. How did you feel about loading times?

Please note that depending on your internet connection and other factors (such as the machine

you are using) may affect this. Also the first translation will always take longer than the

following ones.

© Very short

© Short

© Reasonable

© Long

© Too long

10. You were able to follow the animation along with the text output and
notifications. To what extent do you agree with this statement?

© Agree

© Disagree

© Other: .

11. If you feel that you have enough experience to comment on the ac-
curacy of the translation (in terms of adequacy and fluency), please
do so below.

Adequacy is a rating of how much information is transferred between the original and the

translation, and fluency is a rating of how good the translation is.

. .

119

12. Would you recommend this website to someone curious about sign
language?

© Yes

© No

© Don’t care

13. Why?

. .

14. Would you recommend this website to someone who is learning BSL?

© Yes

© No

© Don’t care

15. Why?

. .

16. Finally, what did you like about the application?

. .

17. What did you dislike?

. .

120

